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Measurements and Bits: 
Compressed Sensing 

meets 
Information Theory



Sensing by Sampling
• Sample data at Nyquist rate
• Compress data using model (e.g., sparsity)

– encode coefficient locations and values
• Lots of work to throw away >80% of the coefficients
• Most computation at sensor (asymmetrical)
• Brick wall to performance of modern acquisition systems
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receive decompress
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sparse wavelet transform



Sparsity / Compressibility
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• Many signals are sparse or compressible in 
some representation/basis (Fourier, wavelets, …)



Compressed Sensing

• Shannon/Nyquist sampling theorem
– worst case bound for any bandlimited signal
– too pessimistic for some classes of signals
– does not exploit signal sparsity/compressibility

• Seek direct sensing of compressible information

• Compressed Sensing (CS)
– sparse signals can be recovered from a small number 

of nonadaptive (fixed) linear measurements
– [Candes et al.; Donoho; Kashin; Gluskin; Rice…]

– based on new uncertainty principles 
beyond Heisenberg (“incoherency”)



Incoherent Bases (matrices)

• Spikes and sines (Fourier)



Incoherent Bases

• Spikes and “random noise”



• Measure linear projections onto incoherent basis 
where data is not sparse/compressible
– random projections are universally incoherent
– fewer measurements
– no location information

• Reconstruct via optimization 
• Highly asymmetrical (most computation at receiver)

Compressed Sensing via Random Projections

project transmit/store

receive reconstruct



CS Encoding
• Replace samples by more general encoder

based on a few linear projections (inner products)
• Matrix vector multiplication – potentially analog

measurements sparse
signal

# non-zeros



• Random projections
• Universally incoherent with any compressible/sparse 

signal class

measurements sparse
signal

Universality via Random Projections

# non-zeros



Reconstruction Before-CS –
• Goal: Given measurements     find signal
• Fewer rows than columns in measurement matrix
• Ill-posed: infinitely many solutions 
• Classical solution:  least squares



• Goal:  Given measurements     find signal
• Fewer rows than columns in measurement matrix
• Ill-posed: infinitely many solutions 
• Classical solution:  least squares
• Problem: small L2 doesn’t imply sparsity

Reconstruction Before-CS –



Ideal Solution –
• Ideal solution:  exploit sparsity of
• Of the infinitely many solutions     seek sparsest one

number of 
nonzero entries



Ideal Solution –
• Ideal solution:  exploit sparsity of
• Of the infinitely many solutions     seek sparsest one
• If M · K then w/ high probability this can’t be done
• If M ¸ K+1 then perfect reconstruction

w/ high probability [Bresler et al.; Wakin et al.]

• But not robust and combinatorial complexity



The CS Revelation –
• Of the infinitely many solutions     seek the one

with smallest L1 norm



• Of the infinitely many solutions     seek the one
with smallest L1 norm

• If then perfect reconstruction
w/ high probability [Candes et al.; Donoho]

• Robust to measurement noise
• Linear programming

The CS Revelation –



CS Hallmarks
• CS changes the rules of data acquisition game

– exploits a priori signal sparsity information (signal is compressible)

• Hardware: Universality
– same random projections / hardware for any compressible signal class   
– simplifies hardware and algorithm design 

• Processing: Information scalability
– random projections ~ sufficient statistics
– same random projections for range of tasks  

reconstruction > estimation > recognition > detection
– far fewer measurements required to detect/recognize

• Next generation data acquisition
– new imaging devices and A/D converters [DARPA]

– new reconstruction algorithms
– new distributed source coding algorithms [Baron et al.]



Random 
Projections 
in Analog



Optical Computation of Random Projections

• CS encoder integrates sensing, compression, processing
• Example: new cameras and imaging algorithms 



First Image Acquisition (M=0.38N)
ideal 64x64 image

(4096 pixels)
400

wavelets

image on
DMD array

1600
random meas.



A/D Conversion Below Nyquist Rate

• Challenge:
– wideband signals (radar, communications, …)
– currently impossible to sample at Nyquist rate

• Proposed CS-based solution: 
– sample at “information rate”
– simple hardware components
– good reconstruction performance

DownsampleFilter

Modulator



Connections Between 
Compressed Sensing 
and 
Information Theory



Measurement Reduction via CS

• CS reconstruction via 
– If then perfect reconstruction

w/ high probability [Candes et al.; Donoho]

– Linear programming

• Compressible signals (signal components decay)
– also requires
– polynomial complexity (BPDN) [Candes et al.]

– cannot reduce order of     [Kashin,Gluskin]



Fundamental Goal: Minimize 

• Compressed sensing aims to minimize resource 
consumption due to measurements

• Donoho: 
“Why go to so much effort to acquire all the data 
when most of what we get will be thrown away?”



Fundamental Goal: Minimize 

• Compressed sensing aims to minimize resource 
consumption due to measurements

• Donoho: 
“Why go to so much effort to acquire all the data 
when most of what we get will be thrown away?”

• Recall sparse signals
– only measurements  for reconstruction
– not robust and combinatorial complexity



Rich Design Space

• What performance metric to use?
– Determine support set of nonzero entries [Wainwright]

this is distortion metric
but why let tiny nonzero entries spoil the fun?

– metric? ?
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• What complexity class of reconstruction algorithms?
– any algorithms? 
– polynomial complexity?
– near-linear or better?



Rich Design Space

• What performance metric to use?
– Determine support set of nonzero entries [Wainwright]

this is distortion metric
but why let tiny nonzero entries wreck spoil the fun?

– metric? ?

• What complexity class of reconstruction algorithms?
– any algorithms? 
– polynomial complexity?
– near-linear or better?

• How to account for imprecisions?
– noise in measurements?
– compressible signal model?



Lower Bound on 
Number of 
Measurements



Measurement Noise

• Measurement process is analog
• Analog systems add noise, non-linearities, etc.

• Assume Gaussian noise for ease of analysis



Setup
• Signal    is iid
• Additive white Gaussian noise
• Noisy measurement process



Setup
• Signal    is iid
• Additive white Gaussian noise
• Noisy measurement process

• Random projection of tiny coefficients (compressible 
signals) similar to measurement noise



Measurement and Reconstruction Quality

• Measurement signal to noise ratio

• Reconstruct using decoder mapping

• Reconstruction distortion metric

• Goal: minimize CS measurement rate



Measurement Channel

• Model process as measurement channel

• Capacity of measurement channel

• Measurements are bits!



Lower Bound [Sarvotham et al.]

• Theorem: For a sparse signal with rate-distortion 
function , lower bound on measurement rate    
subject to measurement quality and 
reconstruction distortion satisfies 

• Direct relationship to rate-distortion content

• Applies to any linear signal acquisition system



Lower Bound [Sarvotham et al.]

• Theorem: For a sparse signal with rate-distortion 
function , lower bound on measurement rate    
subject to measurement quality and 
reconstruction distortion satisfies 

• Proof sketch:
– each measurement provides bits
– information content of source bits
– source-channel separation for continuous amplitude sources  
– minimal number of measurements

– obtain measurement rate via normalization by 



Example

• Spike process - spikes of uniform amplitude
• Rate-distortion function
• Lower bound

• Numbers:
– signal of length 107

– 103 spikes
– SNR=10 dB ⇒
– SNR=-20 dB ⇒

• If interesting portion of signal has relatively small 
energy then need significantly more measurements!

• Upper bound (achievable) in progress…



CS Reconstruction 
Meets 
Channel Coding



Why is Reconstruction Expensive?

measurements
sparse
signal

nonzero
entries

Culprit: dense, unstructured  



Fast CS Reconstruction

measurements
sparse
signal

nonzero
entries

• LDPC measurement matrix (sparse)
• Only 0/1 in 
• Each row of        contains     randomly placed 1’s 
• Fast matrix multiplication 

fast encoding 
fast reconstruction



Ongoing Work: CS Using BP

• Considering noisy CS signals
• Application of Belief Propagation 

– BP over real number field
– sparsity is modeled as prior in graph

Measurements
YStates Coefficients

XQ



Promising Results
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Theoretical Advantages of CS-BP

• Low complexity

• Provable reconstruction with noisy measurements 
using

• Success of LDPC+BP in channel coding carried over 
to CS!



Distributed
Compressed 
Sensing (DCS)

CS for distributed 
signal ensembles



Why Distributed?

• Networks of many sensor nodes
– sensor, microprocessor for computation, 

wireless communication, networking, battery
– can be spread over large geographical area

• Must be energy efficient
– minimize communication at expense of computation
– motivates distributed compression



destination

raw
data

Distributed Sensing

• Transmitting raw data typically inefficient



• Can we exploit 
intra-sensor and 
inter-sensor

correlation to jointly compress?
• Ongoing challenge in information 

theory (distributed source coding)

Correlation

destination

?



destination

Collaborative Sensing

• Collaboration introduces 
– inter-sensor 

communication overhead
– complexity at sensors

compressed 
data



destination

Distributed 
Compressed Sensing

• Exploit intra- and inter-sensor 
correlations with 
– zero inter-sensor 

communication overhead
– low complexity at sensors

• Distributed source coding via CS

compressed 
data



Model 1:
Common + 
Innovations



Common + Innovations Model
• Motivation: measuring signals in smooth field

– “average” temperature value common at multiple locations
– “innovations” driven by wind, rain, clouds, etc.

• Joint sparsity model:
– length-N sequences x1 and x

2

– zC is length-N common component
– z1, z2 length-N innovations components
– zC, z1, z2 have sparsity KC, K1, K2

• Measurements



Measurement Rate Region with 
Separate Reconstruction

separate 
encoding & 
recon

Decoder g1

Decoder g2

Encoder f1

Encoder f2



Slepian-Wolf Theorem 
(Distributed lossless coding)

• Theorem: [Slepian and Wolf 1973]

R1 > H(X1|X2) (conditional entropy)
R2 > H(X2|X1) (conditional entropy)
R1+R2 > H(X1,X2) (joint entropy)

R1

R2

H(X2|X1)

H(X2)

H(X1)H(X1|X2)

Slepian-Wolf 
joint recon

separate encoding & 
separate recon



separate encoding & 
joint recon

Measurement Rate Region 
with Joint Reconstruction

Encoder f1

Decoder g

Encoder f2

• Inspired by Slepian-Wolf coding



simulation

separate 
reconstruction

converse

achievable

Measurement Rate Region [Baron et al.]



Multiple Sensors



Model 2:
Common 
Sparse 
Supports



Ex: Many audio signals
• sparse in Fourier Domain
• same frequencies received 

by each node
• different attenuations and delays 

(magnitudes and phases)

Common Sparse Supports Model



• Signals share sparse components but
different coefficients

• Intuition: Each measurement vector holds clues 
about coefficient support set

…

Common Sparse Supports Model



Required Number of Measurements
[Baron et al. 2005]

• Theorem: M=K measurements per sensor do not 
suffice to reconstruct signal ensemble 

• Theorem: As number of sensors J increases, M=K+1 
measurements suffice to reconstruct

• Joint reconstruction with reasonable computational 
complexity



Results for Common Sparse Supports K=5
N=50

Separate
Joint

Reconstruction



Real Data Example 

• Light levels in Intel Berkeley Lab
• 49 sensors, 1024 samples each
• Compare:

– wavelet approx 100 terms per sensor
– separate CS 400 measurements per sensor
– joint CS (SOMP) 400 measurements per sensor 

• Correlated signal ensemble



Light Intensity at Node 19



Model 3:
Non-Sparse 
Common 
Component



Non-Sparse Common Model

• Motivation: non-sparse video frame + sparse motion
• Length-N common component zC is non-sparse
⇒Each signal is incompressible
• Innovation sequences zj may share supports

• Intuition: each measurement vector contains clues 
about common component zC

…
not sparse

sparse



Results for Non-Sparse Common   
(same supports)

K=5
N=50

Impact of zC vanishes
as J ! 1



Summary
• Compressed Sensing

– “random projections”
– process sparse signals using far fewer measurements
– universality and information scalability

• Determination of measurement rates in CS
– measurements are bits
– lower bound on measurement rate

direct relationship to rate-distortion content

• Promising results with LDPC measurement matrices

• Distributed CS
– new models for joint sparsity
– analogy with Slepian-Wolf coding from information theory
– compression of sources w/ intra- and inter-sensor correlation

• Much potential and much more to be done
• Compressed sensing meets information theory

dsp.rice.edu/cs



THE END



“With High Probability”


