Measurements and Bits: Compressed Sensing meets Information Theory

Dror Baron
ECE Department
Rice University
dsp.rice.edu/cs

Sensing by Sampling

- Sample data at Nyquist rate
- Compress data using model (e.g., sparsity)
 - encode coefficient locations and values
- Lots of work to throw away >80% of the coefficients
- Most computation at sensor (asymmetrical)
- Brick wall to performance of modern acquisition systems

Sparsity / Compressibility

 Many signals are sparse or compressible in some representation/basis (Fourier, wavelets, ...)

N pixels

 $K \ll N$ large wavelet coefficients

N wideband signal samples

 $K \ll N$ large Gabor coefficients

Compressed Sensing

- Shannon/Nyquist sampling theorem
 - worst case bound for any bandlimited signal
 - too pessimistic for some classes of signals
 - does not exploit signal sparsity/compressibility

- Seek direct sensing of compressible information
- Compressed Sensing (CS)
 - sparse signals can be recovered from a small number of nonadaptive (fixed) linear measurements
 - [Candes et al.; Donoho; Kashin; Gluskin; Rice...]
 - based on new uncertainty principles beyond Heisenberg ("incoherency")

Incoherent Bases (matrices)

Spikes and sines (Fourier)

$$\Psi = I$$

$$\Phi = idct(I)$$

Incoherent Bases

Spikes and "random noise"

Compressed Sensing via Random Projections

- Measure linear projections onto incoherent basis where data is not sparse/compressible
 - random projections are universally incoherent
 - fewer measurements $M pprox K \log(N/K) \ll N$
 - no location information
- Reconstruct via optimization
- Highly asymmetrical (most computation at receiver)

CS Encoding

- Replace samples by more general encoder based on a few linear projections (inner products)
- Matrix vector multiplication potentially analog

Universality via Random Projections

- Random projections
- Universally incoherent with any compressible/sparse signal class

$$y = \Phi x$$

$$M \times 1 \\ \text{measurements} = M \times 1 \\ \text{sparse signal}$$

$$M \approx K \log(N/K) \ll N$$

$$K \otimes K \log(N/K) \ll N$$

Reconstruction Before-CS $-\ell_2$

- Goal: Given measurements y find signal x
- Fewer rows than columns in measurement matrix Φ
- ///-posed: infinitely many solutions \widehat{x}
- Classical solution: *least squares*

Reconstruction Before-CS $-\ell_2$

- Goal: Given measurements y find signal x
- Fewer rows than columns in measurement matrix Φ
- ///-posed: infinitely many solutions \widehat{x}
- Classical solution: *least squares*
- Problem: small L₂ doesn't imply sparsity

Ideal Solution – ℓ_0

- *Ideal* solution: exploit sparsity of x
- Of the infinitely many solutions \widehat{x} seek sparsest one

Ideal Solution – ℓ_0

- *Ideal* solution: exploit sparsity of x
- Of the infinitely many solutions \widehat{x} seek sparsest one
- If M · K then w/ high probability this can't be done
- If M_x K+1 then perfect reconstruction
 w/ high probability [Bresler et al.; Wakin et al.]
- But not robust and combinatorial complexity

The CS Revelation $-\ell_1$

- Of the infinitely many solutions \widehat{x} seek the one with smallest ℓ_1 norm

The CS Revelation $-\ell_1$

- Of the infinitely many solutions \widehat{x} seek the one with smallest ℓ_1 norm
- If $M \approx K \log(N/K)$ then perfect reconstruction w/ high probability [Candes et al.; Donoho]
- Robust to measurement noise
- Linear programming

CS Hallmarks

- CS changes the rules of data acquisition game
 - exploits a priori signal sparsity information (signal is compressible)

Hardware: Universality

- same random projections / hardware for any compressible signal class
- simplifies hardware and algorithm design

• Processing: Information scalability

- random projections ~ sufficient statistics
- same random projections for range of tasks
 - reconstruction > estimation > recognition > detection
- far fewer measurements required to detect/recognize
- Next generation data acquisition
 - new imaging devices and A/D converters [DARPA]
 - new reconstruction algorithms
 - new distributed source coding algorithms [Baron et al.]

Random Projections in Analog

Optical Computation of Random Projections

- CS encoder integrates sensing, compression, processing
- Example: new cameras and imaging algorithms

First Image Acquisition (M=0.38N)

ideal 64x64 image (4096 pixels)

image on DMD array

400 wavelets

1600 random meas.

A/D Conversion Below Nyquist Rate

Challenge:

- wideband signals (radar, communications, ...)
- currently impossible to sample at Nyquist rate

Proposed CS-based solution:

- sample at "information rate"
- simple hardware components
- good reconstruction performance

Connections Between Compressed Sensing and Information Theory

Measurement Reduction via CS

- CS reconstruction via ℓ_1
 - If $M \approx K \log(N/K)$ then perfect reconstruction w/ high probability [Candes et al.; Donoho]
 - Linear programming
- Compressible signals (signal components decay)
 - also requires $M = O(K \log(N/K))$
 - polynomial complexity (BPDN) [Candes et al.]
 - cannot reduce order of M [Kashin,Gluskin]

Fundamental Goal: Minimize M

 Compressed sensing aims to minimize resource consumption due to measurements

• Donoho:

"Why go to so much effort to acquire all the data when most of what we get will be thrown away?"

Fundamental Goal: Minimize M

 Compressed sensing aims to minimize resource consumption due to measurements

• Donoho:

"Why go to so much effort to acquire all the data when most of what we get will be thrown away?"

- Recall sparse signals
 - only M=K+1 measurements for ℓ_0 reconstruction
 - not robust and combinatorial complexity

Rich Design Space

- What performance metric to use?
 - Determine support set of nonzero entries [Wainwright]
 - ullet this is ℓ_0 distortion metric
 - but why let tiny nonzero entries spoil the fun?
 - ℓ_1 metric? ℓ_2 ?

Rich Design Space

- What performance metric to use?
 - Determine support set of nonzero entries [Wainwright]
 - ullet this is ℓ_0 distortion metric
 - but why let tiny nonzero entries spoil the fun?
 - ℓ_1 metric? ℓ_2 ?
- What complexity class of reconstruction algorithms?
 - any algorithms?
 - polynomial complexity?
 - near-linear or better?

Rich Design Space

- What performance metric to use?
 - Determine support set of nonzero entries [Wainwright]
 - ullet this is ℓ_0 distortion metric
 - but why let tiny nonzero entries wreck spoil the fun?
 - ℓ_1 metric? ℓ_2 ?
- What complexity class of reconstruction algorithms?
 - any algorithms?
 - polynomial complexity?
 - near-linear or better?
- How to account for imprecisions?
 - noise in measurements?
 - compressible signal model?

Lower Bound on Number of Measurements

Measurement Noise

- Measurement process is analog
- Analog systems add noise, non-linearities, etc.
- Assume Gaussian noise for ease of analysis

Setup

- Signal x is iid $x_i \sim p_X(x)$
- Additive white Gaussian noise $z_i \sim \mathcal{N}(0,1)$
- Noisy measurement process

$$y = y_0 + z = \Phi x + z$$

Setup

- Signal x is iid $x_i \sim p_X(x)$
- Additive white Gaussian noise $z_i \sim \mathcal{N}(0,1)$
- Noisy measurement process

$$y = y_0 + z = \Phi x + z$$

 Random projection of tiny coefficients (compressible signals) similar to measurement noise

Measurement and Reconstruction Quality

Measurement signal to noise ratio

SNR =
$$\frac{E[||y_0||_2^2]}{E[||z||_2^2]}$$
 = $\frac{E[||y_0||_2^2]}{M}$

- Reconstruct using decoder mapping $\,D_x:\,\,y
 ightarrow \widehat{x}\,$
- Reconstruction distortion metric

$$D = \frac{E[\|\hat{x} - x\|_2^2]}{E[\|x\|_2^2]}$$

• Goal: minimize CS measurement rate

$$\delta = \lim_{N \to \infty} \inf_{\{D_x: SNR, achieves D\}} \frac{M}{N}$$

Measurement Channel

- Model process $y_0 \rightarrow y$ as measurement channel
- Capacity of measurement channel

$$C = \frac{1}{2}\log_2(1 + \mathsf{SNR})$$

Measurements are bits!

Lower Bound [Sarvotham et al.]

• Theorem: For a sparse signal with rate-distortion function R(D), lower bound on measurement rate δ subject to measurement quality SNR and reconstruction distortion D satisfies

$$\delta \ge \frac{2R(D)}{\log_2(1+\mathsf{SNR})}$$

- Direct relationship to rate-distortion content
- Applies to any linear signal acquisition system

Lower Bound [Sarvotham et al.]

• Theorem: For a sparse signal with rate-distortion function R(D), lower bound on measurement rate δ subject to measurement quality SNR and reconstruction distortion D satisfies

$$\delta \ge \frac{2R(D)}{\log_2(1+\mathsf{SNR})}$$

Proof sketch:

- each measurement provides $C = \frac{1}{2} \log_2(1 + SNR)$ bits
- information content of source ~pprox NR(D) bits
- source-channel separation for continuous amplitude sources
- minimal number of measurements $M \approx \frac{NR(D)}{\frac{1}{2}\log_2(1+\mathsf{SNR})}$
- obtain measurement rate $\,\delta\,$ via normalization by $\,N\,$

Example

- Spike process K spikes of uniform amplitude
- Rate-distortion function $NR(D) \approx K \log(N/K)$
- Lower bound $\delta \gtrsim \frac{2K \log_2(N/K)}{N \log_2(1+\mathsf{SNR})}$
- Numbers:
 - signal of length 10⁷
 - 10³ spikes
 - SNR=10 dB \Rightarrow $M \gtrsim 7,682$
 - SNR=-20 dB $\Rightarrow M \gtrsim 1.85 \cdot 10^6$
- If interesting portion of signal has relatively small energy then need significantly more measurements!
- Upper bound (achievable) in progress...

CS Reconstruction Meets Channel Coding

Why is Reconstruction Expensive?

Culprit: dense, unstructured Ф

Fast CS Reconstruction

- LDPC measurement matrix (sparse)
- Only 0/1 in Ф
- Each row of Φ contains L randomly placed 1's
- Fast matrix multiplication
 - √ fast encoding
 - √ fast reconstruction

Ongoing Work: CS Using BP

- Considering noisy CS signals
- Application of Belief Propagation
 - BP over real number field
 - sparsity is modeled as prior in graph

Theoretical Advantages of CS-BP

- Low complexity $O(N \log(N))$
- Provable reconstruction with noisy measurements using $M = O(K \log(N/K))$
- Success of LDPC+BP in channel coding carried over to CS!

Distributed Compressed Sensing (DCS)

CS for distributed signal ensembles

Why Distributed?

- Networks of many sensor nodes
 - sensor, microprocessor for computation, wireless communication, networking, battery
 - can be spread over large geographical area

- Must be energy efficient
 - minimize communication at expense of computation
 - motivates distributed compression

Distributed Sensing

Transmitting raw data typically inefficient

 Ongoing challenge in information theory (distributed source coding)

Collaborative Sensing

- Collaboration introduces
 - inter-sensorcommunication overhead
 - complexity at sensors

Distributed Compressed Sensing

- zero inter-sensor communication overhead
- low complexity at sensors
- Distributed source coding via CS

Model 1: Common + Innovations

Common + Innovations Model

- Motivation: measuring signals in smooth field
 - "average" temperature value common at multiple locations
 - "innovations" driven by wind, rain, clouds, etc.
- Joint sparsity model:
 - length-N sequences x₁ and x₂

$$\begin{array}{rcl} x_1 & = & z_C + z_1 \\ x_2 & = & z_C + z_2 \end{array}$$

- $-z_c$ is length-N *common* component
- $-z_1$, z_2 length-N *innovations* components
- z_C , z_1 , z_2 have sparsity K_C , K_1 , K_2

Measurement Rate Region with Separate Reconstruction

Slepian-Wolf Theorem (Distributed lossless coding)

• Theorem: [Slepian and Wolf 1973]

$$R_1 > H(X_1|X_2)$$
 (conditional entropy)
 $R_2 > H(X_2|X_1)$ (conditional entropy)
 $R_1 + R_2 > H(X_1, X_2)$ (joint entropy)

Measurement Rate Region with *Joint* Reconstruction

Inspired by Slepian-Wolf coding

Measurement Rate Region [Baron et al.]

Multiple Sensors

Model 2:Common
Sparse
Supports

Common Sparse Supports Model

- sparse in Fourier Domain
- same frequencies received by each node
- different attenuations and delays (magnitudes and phases)

Common Sparse Supports Model

 Signals share sparse components but different coefficients

 Intuition: Each measurement vector holds clues about coefficient support set

Required Number of Measurements [Baron et al. 2005]

- Theorem: M=K measurements per sensor do not suffice to reconstruct signal ensemble
- Theorem: As number of sensors J increases, M=K+1 measurements suffice to reconstruct
- Joint reconstruction with reasonable computational complexity

N=50 Results for Common Sparse Supports

Real Data Example

- Light levels in Intel Berkeley Lab
- 49 sensors, 1024 samples each
- Compare:

 wavelet approx 100 terms per se
--

- separate CS400 measurements per sensor
- joint CS (SOMP) 400 measurements per sensor

Correlated signal ensemble

Light Intensity at Node 19

Model 3: Non-Sparse Common Component

Non-Sparse Common Model

- Motivation: non-sparse video frame + sparse motion
- Length-N common component z_c is non-sparse
- ⇒ Each signal is incompressible
- Innovation sequences z_j may share supports

 Intuition: each measurement vector contains clues about common component z_c

Summary

- Compressed Sensing
 - "random projections"
 - process sparse signals using far fewer measurements
 - universality and information scalability
- Determination of measurement rates in CS
 - measurements are bits
 - lower bound on measurement rate
 - direct relationship to rate-distortion content
- Promising results with LDPC measurement matrices
- Distributed CS
 - new models for joint sparsity
 - analogy with Slepian-Wolf coding from information theory
 - compression of sources w/ intra- and inter-sensor correlation
- Much potential and much more to be done
- Compressed sensing meets information theory

dsp.rice.edu/cs

THE END

"With High Probability"

