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Sensing by Sampling

e Sample data at Nyquist rate

e Compress data using model (e.g., sparsity)
— encode coefficient locations and values

e Lots of work to throw away >80% of the coefficients
e Most computation at sensor (asymmetrical)
e Brick wall to performance of modern acquisition systems
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Sparsity / Compressibility

e Many signals are sparse or compressible In

some representation/basis (Fourier, wavelets, ...)
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Compressed Sensing

e Shannon/Nyquist sampling theorem
— worst case bound for any bandlimited signal
— too pessimistic for some classes of signals
— does not exploit signal sparsity/compressibility

e Seek direct sensing of compressible information

e Compressed Sensing (CS)
— sparse signals can be recovered from a small number
of nonadaptive (fixed) linear measurements
— [Candes et al.; Donoho; Kashin; Gluskin; Rice...]

— based on new uncertainty principles
beyond Heisenberg (“incoherency”)




Incoherent Bases (matrices)

e Spikes and sines (Fourier)

W= ® = idct(1I)




Incoherent Bases

e Spikes and “random noise”

V=] ® = randn(N, N)
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Compressed Sensing via Random Projections

e Measure linear projections onto incoherent basis
where data is not sparse/compressible
— random projections are universally incoherent

— fewer measurements M ~ K Iog(N/K) < N

— no location information
e Reconstruct via optimization
e Highly asymmetrical (most computation at receiver)
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CS Encoding

e Replace samples by more general encoder
based on a few linear projections (inner products)

e Matrix vector multiplication — potentially analog

y = Ox

Y €p)
M x 1
measurements p—

M ~ Klog(N/K) < N
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Universality via Random Projections

e Random projections

e Universally incoherent with any compressible/sparse
signhal class

y = P
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Reconstruction Before-CS —¥#-

Goal: Given measurements Yy find signal x
Fewer rows than columns in measurement matrix @

lll-posed: infinitely many solutions
Classical solution: least squares

T = arg min ||z||2
y=>x
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Reconstruction Before-CS —¥#-

Goal: Given measurements Yy find signal x
Fewer rows than columns in measurement matrix @

lll-posed: infinitely many solutions
Classical solution: least squares
Problem: small L, doesn’t imply sparsity
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Ideal Solution — £

e |ldeal solution: exploit sparsity of &
e Of the infinitely many solutions T seek sparsest one

T = arg min [|x||o
y=>x I

number of
nonzero entries

HEE EEEEE BN EERS




Y

Ideal Solution — £

Ideal solution: exploit sparsity of &
Of the infinitely many solutions x seek sparsest one
If M - K then w/ high probability this can’t be done

If M | K+1 then perfect reconstruction
w/ high probability [Bresler et al.; Wakin et al.]

But not robust and combinatorial complexity
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The CS Revelation —¥£1

e Of the infinitely many solutions T seek the one
with smallest £1 norm

r = arg min ||z||1
y=>x I
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The CS Revelation —¥£1

e Of the infinitely many solutions T seek the one
with smallest £1 norm

e If M ~ Klog(N/K) then perfect reconstruction
w/ high probability [Candes et al.; Donoho]

e Robust to measurement noise
e Linear programming
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CS Hallmarks

CS changes the rules of data acquisition game
— exploits a priori signal sparsity information (signal is compressible)

Hardware: Universality
— same random projections / hardware for any compressible signal class
— simplifies hardware and algorithm design

Processing: Information scalability
— random projections — sufficient statistics
— same random projections for range of tasks
* reconstruction > estimation > recognition > detection
— far fewer measurements required to detect/recognize

Next generation data acquisition

— new imaging devices and A/D converters [DARPA]

— new reconstruction algorithms

— new distributed source coding algorithms [Baron et al.]
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Optical Computation of Random Projections

Low-cost, fast, sensitive

optical detection ))
PD Y
A/D

Compressed, encoded
image data sent via RF
for reconstruction

y

Rcvr

Image encoded by PMM
and random basis

e CS encoder integrates sensing, compression, processing
e Example: new cameras and imaging algorithms



First Image Acquisition (M=0.38N)

ideal 64x64 image 400
(4096 pixels) wavelets

Image on 1600
DMD array random meas.




A/D Conversion Below Nyquist Rate

Modulator

x H

Filter Downsample

A 4

D — vy

p
e Challenge:

— wideband signals (radar, communications, ...)
— currently impossible to sample at Nyquist rate

e Proposed CS-based solution:
— sample at “information rate”
— simple hardware components
— good reconstruction performance



Connections Between =%
Compressed Sensing
and

Information Theory




Measurement Reduction via CS

e CS reconstruction via f1

—If M =~ KI10g(IN/K) then perfect reconstruction
w/ high probability [Candes et al.; Donoho]

— Linear programming

e Compressible signals (signal components decay)
— also requires M = O(K log(N/K))
— polynomial complexity (BPDN) [Candes et al.]
— cannot reduce order of )\f [Kashin,Gluskin]



Fundamental Goal: Minimize M

e Compressed sensing aims to minimize resource
consumption due to measurements

e Donoho:

“Why go to so much effort to acquire all the data
when most of what we get will be thrown away?”



Fundamental Goal: Minimize M

e Compressed sensing aims to minimize resource
consumption due to measurements

e Donoho:

“Why go to so much effort to acquire all the data
when most of what we get will be thrown away?”

e Recall sparse signals
—only M = K + 1 measurements for {n reconstruction
— not robust and combinatorial complexity



Rich Design Space

e What performance metric to use?
— Determine support set of nonzero entries [Wainwright]
= this is KO distortion metric
* but why let tiny nonzero entries spoil the fun?
— {1 metric? {>?



Rich Design Space

e \What performance metric to use?
— Determine support set of nonzero entries [Wainwright]
= this is KO distortion metric
* but why let tiny nonzero entries spoil the fun?
— {1 metric? {>?

e \What complexity class of reconstruction algorithms?
— any algorithms?
— polynomial complexity?
— near-linear or better?



Rich Design Space

e What performance metric to use?
— Determine support set of nonzero entries [Wainwright]
= this is EO distortion metric
* pbut why let tiny nonzero entries wreck spoil the fun?
— {1 metric? {>?

e What complexity class of reconstruction algorithms?
— any algorithms?
— polynomial complexity?
— near-linear or better?

e How to account for imprecisions?
— noise in measurements?
— compressible signal model?
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Measurement Noise

e Measurement process is analog
e Analog systems add noise, non-linearities, etc.

e Assume Gaussian noise for ease of analysis



Setup

e Signal T isiid x; ~ pX(x)

- Additive white Gaussian noise z; ~ N (0, 1)

« Noisy measurement process
Yy=yot+z=>Pr+z
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Setup

Signalx is iid x; ~ pX(x)

Additive white Gaussian noise z; ~ N (0, 1)

Noisy measurement process
y=yo+z=®Pxr+z

Random projection of tiny coefficients (compressible
sighals) similar to measurement noise
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Measurement and Reconstruction Quality

Measurement signal to noise ratio

_ Blliwlzl — Ellwl?)
SNR=Fid = —m

P

Reconstruct using decoder mapping D, . y —

Reconstruction distortion metric

_ Bllz—al]
D = =5imm

Goal: minimize CS measurement rate

S : M
0 =liMy_ooINT, . SNR, achieves p} &



Measurement Channel

e Model process Yypg — y as measurement channel

e Capacity of measurement channel
C = 2109>(1 + SNR)

e Measurements are bits!



Lower Bound [Sarvotham et al.]

e Theorem: For a sparse signal with rate-distortion
function R(D), lower bound on measurement rate §
subject to measurement quality SNR and
reconstruction distortionD satisfies

2R(D)
0 2> 109, (1+SNR)

e Direct relationship to rate-distortion content

e Applies to any linear signal acquisition system



Lower Bound [Sarvotham et al.]

e Theorem: For a sparse signal with rate-distortion
function R(D), lower bound on measurement rate §
subject to measurement quality SNR and
reconstruction distortionD satisfies

2R(D)
0 2> 109, (1+SNR)

e Proof sketch:
— each measurement provides C = Zl0g,(1 + SNR) bits
— information content of source o~ NR(D) bits
— source-channel separation for continuous amplitude sources
— minimal number of measurements  J/ ~ NR(D)

L10g,(1+SNR)

— obtain measurement rate § via normalization by [N




Example

Spike process - K spikes of uniform amplitude

Rate-distortion function NR(D) ~ K 1og(N/K)

Lower bound > _2K109,(N/K)
023 Nlog,(1+SNR)

Numbers:

— signal of length 107

— 1083 spikes

— SNR=10dB= M 2> 7,682

— SNR=-20dB = ) > 1.85-10°

If interesting portion of signhal has relatively small
energy then need significantly more measurements!

Upper bound (achievable) in progress...



CS Reconstruction
Meets
Channel Coding




Why Is Reconstruction Expensive?

Culprit: dense, unstructured @

Yo
N x 1
M x 1 sparse
measurements signal
B K
! nonzero
K<MKN - entries




Fast CS Reconstruction

LDPC measurement matrix (sparse)

Only 0/1 in &
Each row of @ contains £~ randomly placed 1’s

Fast matrix multiplication

v’ fast encoding
v' fast reconstruction

Yo X
i N x 1
M x 1 — H sparse
measurements — signal
[
MxN §H g
! nonzero
K<MKN - entries




Ongoing Work: CS Using BP

e Considering noisy CS signals
 Application of Belief Propagation

— BP over real number field

— sparsity is modeled as prior in graph
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12 reconstruction error
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Theoretical Advantages of CS-BP

e Low complexity O(N log(N))

e Provable reconstruction with noisy measurements
using M = O(K log(N/K))

e Success of LDPC+BP in channel coding carried over
to CS!



Distributed
Compressed
Sensing (DCS)

CS for distributed
sighal ensembles
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Why Distributed?

e Networks of many sensor nodes

— sensor, microprocessor for computation,
wireless communication, networking, battery

— can be spread over large geographical area
e Must be energy efficient

— minimize communication at expense of computation
— motivates distributed compression
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Distributed Sensing

destination

e Transmitting raw data typically inefficient



Correlation

destination

e Can we exploit
Intra-sensor and
Inter-sensor

correlation to jointly compress?

e Ongoing challenge in information
theory (distributed source coding)



Collaborative Sensing

Q- compressed
data

destination

e Collaboration introduces

— Inter-sensor
communication overhead

— complexity at sensors



Distributed
Compressed Sensing

SR,
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Q- compressed
data

destination

e Exploit intra- and inter-sensor
correlations with

— Zero Inter-sensor
communication overhead

— low complexity at sensors
e Distributed source coding via CS



Model 1:
Common +
lnnovations




Common + Innovations Model

e Motivation: measuring signals in smooth field
— “average” temperature value common at multiple locations
— “Innovations” driven by wind, rain, clouds, etc.

X1 X2

e Joint sparsity model: u O
— length-N sequences x, and X, ! ;

r1 — zc+ 21 = H

x2 = zc + =22 n n

— 2. is length-N common component - a

— Z4, Z, length-N innovations components " .

— Z., Z4, Z, have sparsity K., K;, K,

P11

e Measurements y;

Y2 Doxo



Measurement Rate Region with
Separate Reconstruction

Encoder f, »| Decoder g, >
Encoder f, »| Decoder g, —»
M 4 )
: separate
1 encoding &
: recon
|
C(KC —|— KQ)—— —————————
>

c(Ke+ K1) M;



Slepian-Wolf Theorem
(Distributed lossless coding)

e Theorem: [Slepian and Wolf 1973]
R, = H(X{ X)) (conditional entropy) | = 8 /=
R, > H(X, X)) (conditional entropy) | & 4
R,;+R, = H(X,X,) (joint entropy) ‘

A separate encoding &
n ;'/// separate recon
2 |
|
H(X2) = '/' Slepian-Wolf
«— .
joint recon
HCX, 1 X,) | ]

1 >
H(X X))  H(Xp) R,



Measurement Rate Region
with Joint Reconstruction

—»| Encoder f; > —>
Decoder g
—»| Encoder f, > —>
I '
c(Ko + Ka)1 ' -
K separate encoding &
et Jomt recon

cK1 ¢(Ko + K1) Ml

e Inspired by Slepian-Wolf coding



Measurement Rate Region [Baron et al.]
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Multiple Sensors
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Model 2:
Common
Sparse
Supports




Common Sparse Supports Model

Ex: Many audio signhals
e sparse in Fourier Domain

e same frequencies received
by each node

e different attenuations and delays
(magnitudes and phases)




Common Sparse Supports Model

e Signhals share sparse components but
different coefficients

L1 L2 I Jj
A B H
H B i
. N

e |ntuition: Each measurement vector holds clues
about coefficient support set



Required Number of Measurements
[Baron et al. 2005]

e Theorem: M=K measurements per sensor do not
suffice to reconstruct signal ensemble

e Theorem: As number of sensors J increases, M=K+1
measurements suffice to reconstruct

e Joint reconstruction with reasonable computational
complexity



for Common Sparse Supports

°> Results
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Real Data Example

e Light levels in Intel Berkeley Lab
e 49 sensors, 1024 samples each

e Compare:
— wavelet approx 100 terms per sensor
— separate CS 400 measurements per sensor
— joint CS (SOMP) 400 measurements per sensor

e Correlated signal ensemble

2000

1000




Light Intensity at Node 19
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Model 3:
Non-Sparse
Common
Component




Non-Sparse Common Model

e Motivation: non-sparse video frame + sparse motion
e Length-N common component z- IS hon-sparse
— Each signal is incompressible
= Innovation sequences z; may share supports
L1 L2X3 Tj-1TJ
ﬁ ﬁ B Tj = 2 + z;

I

sparse

not sparse
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e Intuition: each measurement vector contains clues
about common component z.-
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Results for Non-Sparse Common
(same supports)
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Summary

Compressed Sensing

— “random projections”

— process sparse signals using far fewer measurements
— universality and information scalability

Determination of measurement rates in CS
— measurements are bits
— lower bound on measurement rate
» direct relationship to rate-distortion content

Promising results with LDPC measurement matrices

Distributed CS

— new models for joint sparsity

— analogy with Slepian-Wolf coding from information theory

— compression of sources w/ intra- and inter-sensor correlation

Much potential and much more to be done
Compressed sensing meets information theory

dsp.rice.edu/cs



THE END



“With High Probability”

.
00

S
~

.
o

SIS
w A

.
N

Probability of Exact Reconstruction
o
N

0.1

0 1 2 3 4 5 6 7
Measurement Oversampling Factor, c=M/K



