# mmWave Channel Estimation via Approximate Message Passing with Side Information

#### Dror Baron,<sup>1</sup> Cynthia Rush,<sup>2</sup> and Yavuz Yapici<sup>1</sup>

<sup>2</sup>Department of Statistics Columbia University

<sup>1</sup>Department Electrical & Computer Engineering North Carolina State University

21st IEEE International Workshop on Signal Processing Advances in Wireless Communication

### Overview

- Increase in mobile user demand makes mmWave frequency band key asset for next-generation cellular networks
- Mobility of users and scattering obstacles means parameters underlying millimeter channels vary dynamically over time
- Dynamic structure can be used as side information

#### Goal

Channel estimation aided by side information provided by dynamic channel structure

#### Outcome

Improved estimation quality and reducing training overhead

イロト 不通 ト イヨト イヨト

## System Model for mmWave Communication



Representative *i*-th and *j*-th multipaths are shown, along with corresponding angles of arrival  $\{\theta_i, \theta_j\}$  and departure  $\{\phi_i, \phi_j\}$ .

### mmWave Channel Model

Time-varying channel model with  $M_t$  transmit and  $M_r$  receive antennas at time k,

$$\mathbf{H}_{k} = \sqrt{M_{\mathrm{t}}M_{\mathrm{r}}\gamma} \, \alpha_{k} \, \mathbf{a}(\theta_{k}, M_{\mathrm{r}}) \, \mathbf{a}(\phi_{k}, M_{\mathrm{t}})^{\mathrm{H}},$$

where

$$\begin{array}{ll} \gamma & \mbox{signal-to-noise ratio} \\ \alpha_k & \mbox{complex path gains with } \mathcal{CN}(0,1) \\ \theta_k \& \phi_k & \mbox{angles of arrival (AoA) \& departure (AoD)} \end{array}$$

Assuming uniform linear array, array response vectors are

$$\mathbf{a}(\theta_k, M_r) = \frac{1}{\sqrt{M_r}} \begin{bmatrix} 1 & e^{j2\pi \frac{d_a}{\lambda}\sin(\theta_k)} & \cdots & e^{j2\pi \frac{d_a}{\lambda}(M_r-1)\sin(\theta_k)} \end{bmatrix}$$
$$\mathbf{a}(\phi_k, M_t) = \frac{1}{\sqrt{M_t}} \begin{bmatrix} 1 & e^{j2\pi \frac{d_a}{\lambda}\sin(\phi_k)} & \cdots & e^{j2\pi \frac{d_a}{\lambda}(M_t-1)\sin(\phi_k)} \end{bmatrix},$$

where  $d_a$  is antenna spacing,  $\lambda$  wavelength.

3/11

## Time Variation in Path Gains and AoA & AoD

[Zhang et al '16; Va et al '16; Jayaprakasam et al '16]

Complex Path Gain Over Time

Modeled as first order auto-regressive (AR) process,

$$\alpha_{k+1} = \rho \alpha_k + u_k^{\alpha},$$

where

- $\alpha_k$  path gain
  - $\rho$   $\,$  correlation coefficient
- $u_k^{lpha}$  innovation noise with  $\mathcal{CN}(0,1ho^2)$

#### Angular Variation Over Time

Modeled as a Gaussian noise process

$$\theta_{k+1} = \theta_k + u_k^{\theta}, \qquad \phi_{k+1} = \phi_k + u_k^{\phi},$$

with  $u_k^{\theta}$ ,  $u_k^{\phi}$ , innovation noise modeled as  $\mathcal{CN}(0, \sigma^2)$ .

## Side Information

#### Angular Variation and Side Information

- We estimate channel matrix  $\mathbf{H}_k$  for each block k
- Have access to  $\mathbf{H}_{k-1}$  from previous block, k-1
- Use  $\mathbf{H}_{k-1}$  as side information (SI) in estimating  $\mathbf{H}_k$
- Will see that approximate message passing incorporates SI well

#### Key Idea

Channel estimation using approximate message passing aided by side information provided by dynamic channel structure

For channel estimation task, we use class of low-complexity algorithms, referred to as **approximate message passing** or AMP.

[Donoho et al '09; Krzakala et al '12; Montanari '12; Rangan '11]

#### AMP with Side Information

AMP-SI recently introduced algorithmic framework that incorporates side information (SI) into AMP.

[Ma et al '18; Liu et al '19]

### Channel Estimation Model

Signal vector received by user,

$$\mathbf{y}_{k,i} = \mathbf{H}_k \mathbf{s}_{k,i} + \mathbf{n}_{k,i},$$

where

- $\mathbf{n}_{k,i}$  is measurement noise that follows  $\mathcal{CN}(\mathbf{0}_{M_r}, \mathbf{I}_{M_r})$ ,
- $\mathbf{s}_{k,i} \in \mathbb{C}^{M_t}$  unit-energy vector representing pilot symbols transmitted at time *i* in transmission block *k*, and
- we assume the received signals are uncorrelated.

In any block k, there are  $T_p$  such received signals. Using matrix notation for aggregate receive signal,

$$\mathbf{Y}_k = \mathbf{H}_k \mathbf{S}_k + \mathbf{N}_k$$

where

$$\begin{aligned} \mathbf{Y}_{k} &= [\mathbf{y}_{k,1}|\cdots|\mathbf{y}_{k,T_{p}}] \in \mathbb{C}^{M_{r} \times T_{p}} \\ \mathbf{S}_{k} &= [\mathbf{s}_{k,1}|\cdots|\mathbf{s}_{k,T_{p}}] \in \mathbb{C}^{M_{t} \times T_{p}} \\ \mathbf{N}_{k} &= [\mathbf{n}_{k,1}|\cdots|\mathbf{n}_{k,T_{p}}] \in \mathbb{C}^{M_{r} \times T_{p}} \end{aligned}$$

⊃৭ে 7/11

### Channel Estimation Model

Signal vector received by user,

$$\mathbf{y}_{k,i} = \mathbf{H}_k \mathbf{s}_{k,i} + \mathbf{n}_{k,i},$$

where

- $\mathbf{n}_{k,i}$  is measurement noise that follows  $\mathcal{CN}(\mathbf{0}_{M_r}, \mathbf{I}_{M_r})$ ,
- $\mathbf{s}_{k,i} \in \mathbb{C}^{M_t}$  unit-energy vector representing pilot symbols transmitted at time *i* in transmission block *k*, and
- we assume the received signals are uncorrelated.

In any block k, there are  $T_p$  such received signals. Using matrix notation for aggregate receive signal,

$$\mathbf{Y}_k^{\mathrm{T}} = \mathbf{S}_k^{\mathrm{T}} \mathbf{H}_k^{\mathrm{T}} + \mathbf{N}_k^{\mathrm{T}}$$

where

$$\begin{aligned} \mathbf{Y}_{k} &= [\mathbf{y}_{k,1}|\cdots|\mathbf{y}_{k,T_{p}}] \in \mathbb{C}^{M_{r} \times T_{p}} \\ \mathbf{S}_{k} &= [\mathbf{s}_{k,1}|\cdots|\mathbf{s}_{k,T_{p}}] \in \mathbb{C}^{M_{t} \times T_{p}} \\ \mathbf{N}_{k} &= [\mathbf{n}_{k,1}|\cdots|\mathbf{n}_{k,T_{p}}] \in \mathbb{C}^{M_{r} \times T_{p}} \end{aligned}$$

⊃৭ে 7/11

### mmWave Channel Estimation via AMP-SI

Initialize with 
$$\widehat{\mathbf{H}}_{k}^{t} = \mathbf{0}$$
 and for  $t \geq 0$ , compute  
residual  $\mathbf{R}^{t} = \mathbf{Y}_{k}^{\mathrm{T}} - \mathbf{S}_{k}^{\mathrm{T}} \widehat{\mathbf{H}}_{k}^{t} + \mathbf{R}^{t-1} \langle \operatorname{div} \eta_{t}(\mathbf{V}^{t}, \mathsf{SI}_{k-1}) \rangle$ ,  
estimate  $\widehat{\mathbf{H}}_{k}^{t+1} = \eta_{t}(\mathbf{V}^{t}, \mathsf{SI}_{k-1})$ ,  
pseudo-data  $\mathbf{V}^{t+1} = \mathbf{S}_{k}^{*} \mathbf{R}^{t} + \widehat{\mathbf{H}}_{k}^{t}$ ,

**Key Property:**  $V^t$  is approximately equal in distribution to  $H_k^T$  plus i.i.d. Gaussian noise with variance

 $\tau_t^2 \approx ||\mathbf{R}^t||^2 / (M_{\rm r} T_{\rm p})$ 

Estimation quality depends on choice of *denoiser*, denoted  $\eta(\cdot, \cdot)$ .

### Denoisers for AMP-SI

1. Conditional expectation denoiser:

 $\eta_t(\mathbf{V}^t, \mathsf{SI}_{k-1}) = \mathbb{E}[\mathbf{H}_k | \mathbf{V}^t = \mathbf{H}_k + \tau_t \mathbf{G}, \mathsf{SI}_{k-1} = \widehat{\mathbf{H}}_{k-1}].$ 

- Has some nice MMSE properties
- Computationally difficult
- 2. Maximum a posteriori denoiser: compute  $(\hat{\theta}_k, \hat{\Phi}_k, \hat{\alpha}_k)$  that maximizes the posterior,

$$f(\theta_k, \Phi_k, \alpha_k | \mathbf{V}^t = \mathbf{H}_k + \tau_t \mathbf{G}, \mathsf{SI}_{k-1} = (\widehat{\theta}_{k-1}, \widehat{\Phi}_{k-1}, \widehat{\alpha}_{k-1})).$$

- Sub-optimal in terms of MMSE
- Computational advantages

イロト 不得 トイヨト イヨト

### Numerical Results



Figure: MSE as function of number of pilots  $T_p$  per transmission block. AMP-SI used 300 iterations. Our communications setting used  $M_t = 16$ ,  $M_r = 8$ ,  $\rho = 0.995$ ,  $\sigma_{\theta}^2 = \sigma_{\phi}^2 = 1$ , and  $\gamma \in \{10, 20\}$  dB, representing a mmWave channel with reasonable time variation.

# Summary and Future Work

#### Summary

- mmWave channel estimation with time-varying parameters and a single path
- channel estimates at time block k are used as side information when estimating the channel at block k + 1
- employ an SI-aided (complex) AMP algorithm
- compare performance to a benchmark based on orthogonal matching pursuit

#### Future Work

- multipath extensions
- birth-death-drift dynamics between blocks
- evaluate spectral efficiency of algorithm along with hybrid/digital beamforming schemes as function of training length
- compare performance gains over existing methods