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Abstract—This paper presents a generative approach to mod-
eling a high-speed receiver with a time series input. The model is
not built with domain knowledge but learned from a wide range
of channel conditions and input bitstreams to generate an eye
diagram. The generated eye diagrams are similar to the simulated
eye diagrams for the same scenario. We also developed a neural
network model to evaluate the generated eye diagram’s relevant
characteristics, such as eye height and width. The generated eye
diagrams are within 7% and 3% error to the ground-truth in
eye height and eye width, respectively, based on our evaluation
neural network.

Index Terms—eye diagram, IBIS-AMI, generative model, gen-
erative adversarial network, GAN, receiver

I. INTRODUCTION

In a high-speed Serializer/Deserializer (SerDes), signal in-
tegrity has become increasingly difficult. A modern SerDes
consists of a transmitter, a receiver, and a channel to commu-
nicate. Receivers consist of continuous time linear equalizers
(CTLEs) and decision feedback equalizers (DFEs) to mitigate
the effects of the channel, such as intersymbol interference
(ISI). It is typical in the industry to use IBIS Algorithmic
Modeling Interface (IBIS-AMI) models to enable vendors
to share transmitter and receiver behavior without disclosing
their intellectual property. Developing such IBIS-AMI models
requires detailed circuit-level simulations and multiple design
iterations, during which engineers use optimization algorithms
to ensure that systems meet the desired specifications.

To address the problem of multiple design iterations when
using IBIS models, designers have adopted techniques that
utilize machine learning to model the behavior of a high-
speed receiver and its subcomponents [1]–[3]. In [1] and [2],
modeling a receiver is tackled by working with the time-series
information and recovering the time-series information at the
receiver’s output. However, Li et al. use nonlinear system
identification models to recover the time series and then
reconstruct an eye diagram[1], whereas Nguyen and Schutt-
Aine recover only a single pulse response using a recurrent
neural network (RNN) [3] uses a support vector machine to
predict eye height based on the system’s parameters.

Though generative adversarial networks (GANs) have been
used for image generation tasks, they have found use in the
design flow, especially in lithography tasks considered image-
based [4]. In Ye et al., a conditional GAN (cGAN) takes a
mask pattern as input and predicts the corresponding resist
pattern [4].

We present a cGAN based approach to modeling a receiver
with time-series information with the above advancements in
mind. The method incorporates a variety of input bitstreams
from various channels and models the behavior of a receiver
with fixed CTLE and DFE tap weights. We show that by
converting a time-series waveform to an intermediate represen-
tation, we can condition the GAN and recover the eye diagram
with high accuracy to the simulated eye diagram.

The rest of the paper is organized as follows. Section II
describes the proposed method and the metrics utilized for
evaluation. Section III discusses the problem that was ana-
lyzed, and how the dataset was generated. Section IV shows
the experimental results. Section V concludes the article and
presents a brief overview of future work.

II. CONDITIONAL GAN FOR EYE DIAGRAM GENERATION

Inspiration is taken from prior work using cGAN to perform
image to image translation, where the model transforms input
images from one domain to another [5]. GANs consist of two
modules, the generator G and the discriminator D playing a
zero-sum game. Unlike regular GANs, the cGAN’s generator
updates itself to be capable of creating output, ŷ = G(z|x),
that resembles the ground truth based on the input condition,
x, combined with a random noise vector, z. Then, the dis-
criminator updates itself to improve its capability of correctly
identifying if a given output is from a dataset or the generator,
based on the same input condition, x. To that extent, the
objective function of the cGAN is as follows:

LcGAN(G,D) =Ex,y [logD(y|x)]
+Ex,z [log(1−D(G(z|x)|x))] .

(1)

The dropout mechanism introduces the randomness of z in
this implementation, as in Isola et al. [5].

As GANs have been successfully applied to image synthesis
problems [5], we consider receiver modeling as an image
problem. First, we convert the raw time series feeding into the
receiver as an image by transforming it to a Gramian Angular
Sum Field (GASF) [6]. To convert the time series to a GASF,
we scale the original data in [−1, 1]. After scaling the time
series, it is expressed in the polar coordinate system by taking
the arccosine of the value at each time step. Once the time
series is expressed in the polar coordinate system, the (i, j)th
entry of the Gramian sum matrix is constructed by taking the



Fig. 1. GAN architecture used for training all implementations. The generator encoder and decoder with skip connections to forward information for the
reconstruction of the eye diagram. The discriminator takes in the concatenation of the GASF and either the synthetic or ground-truth eye diagram.

trigonometric sum between cosine of the sum of the ith and
the jth angular points. The GASF is then defined as:

G =

cos(φ1 + φ1) . . . cos(φ1 + φn)
...

. . .
...

cos(φn + φ1) . . . cos(φn + φn)

 (2)

where φn is the encoded angular value of the nth time step.
Through the conversion process, the temporal dependency
between time steps is preserved [6], which captures the ISI.
Moreover, the time series problem is converted to an image
problem and can use existing image algorithms.

With the GASF generated, the generator receives it and
reconstructs an eye diagram based on the learned latent
space. The generator is a U-Net-based network similar to that
proposed by Isola et al. [5]. The model has two distinct parts,
an encoder, and a decoder network. The encoder comprises
convolution layers that downsample to lower dimensions to
learn a latent space of the essential information about the eye
diagram from the GASF. The decoder network generates the
image of an eye diagram and consists of convolution transpose
layers. There are skip connections between the encoder and
the decoder to prevent information loss due to the bottleneck
introduced by the encoder. In addition to the objective function
in (1), the generator has an `1 loss function to enforce the
sparsity with the eye diagram reconstruction.

We then describe the discriminator, which gets either the
ground-truth or the synthetic images, and attempts to discern
whether it is a ground-truth eye diagram or a synthetic eye
diagram. Unlike making a binary prediction based on the entire
image, the discriminator is a PatchGAN [5], which outputs
different patches corresponding to regions of the image and
helps recover the global features from the image. The cGAN
model is detailed in Fig. 1.

A challenging task associated with generative image model-
ing is to quantify the resultant images. Metrics such as Frechet
inception distance (FID) determine how similar the actual and
generated images are. In this case, we are concerned with
the image similarity and the relevant eye characteristics. To
achieve this, we use a pre-trained deep neural network (DNN)
to evaluate the quality of the generated images in terms of

eye diagram statistics. The network consists of a series of
convolutional and max-pooling layers, after which there is a
flattening layer before an output layer. The output layer is
a dense layer, where the numbers of neurons correspond to
the desired eye characteristics to being used to evaluate the
synthetic eye diagrams. This DNN aims to achieve comparable
performance in terms of the eye characteristics given the
ground-truth eye diagrams. The DNN is trained separately and
is used to evaluate the generated eye-diagram images.

III. DATASET CREATION

The original dataset consists of time-series waveforms from
Cadence Virtuoso using VerilogA models for a SerDes run-
ning at 5Gb/s. We collect the waveforms coming off the
transmission line and after the DFE in the receiver, with
both waveforms sampled at 5 ps intervals. We collect the eye
diagram statistics from Virtuoso, such as eye height and eye
width, during the data collection. We then randomly split the
waveforms for the duration of the experiments in 60, 20,
and 20 splits for the training, validation, and testing sets,
respectively. For our experiments, we collect a total of 2,000
different bitstreams and channel variations. Both models are
trained on the same data and evaluated on the same test sets.

After collecting the dataset, we preprocess the waveforms to
their corresponding GASF. For this purpose, we downsample
the input waveforms to the receiver by selecting a sample at
50 ps intervals allowed by the Nyquist frequency. We then
transform the downsampled waveform to create a GASF of
size 256×256. The waveforms captured at the receiver’s output
are processed to create eye diagrams by overlapping 2-bit
periods (UIs) on top of each other for the entirety of the
waveform. The preprocessing flow for the data takes 223ms
for one eye diagram generation and 30ms ms for each GASF.

Figure 1 shows an input GASF used to condition the GAN
and generate an eye diagram. Lastly, before we use the eye
diagram statistics for the metric DNN, we rescale the values
between [0, 1] to improve the convergence of the network.‘

IV. EXPERIMENTAL RESULTS

Fig. 2 shows good training and validation performance. For
evaluation purposes, we select the cGAN model during the



Fig. 2. The loss functions corresponding to the discriminator’s loss, gener-
ator’s `1 loss, and the total generator loss. The vertical line indicated that
models used for evaluation were saved at the 148th epoch. Overall, the
generator has good generalization between the training and validation sets.

Fig. 3. The GASF representation of the time series, the corresponding ground-
truth eye diagram, and the generator’s predicted eye diagram for a 210×150
image with zero paddings.

last training iteration, where the discriminator misclassifies
the synthetic eye diagrams from the validation set to be from
the dataset. The converged discriminator loss shows that the
generator can fool the discriminator successfully, indicating
that generated eye diagrams are similar to the ground truth.
As is evident in Fig. 3 and Fig. 4, the generator can accurately
recover the complete eye diagram. More importantly, the
eye openings of the generated images are similar to that
of the ground truth based on visual inspection. However,
the generator struggles to recover the individual lines in the
generated images.

We quantified our results by evaluating the ground truth
and synthetic eye diagrams through our metric-based DNN.
In TABLE I, NN refers to the metric DNN’s performance on
the ground-truth eye diagram and Generated NN refers to the
metric DNN’s performance on the synthetic eye diagrams. The
table shows that the DNN can predict the eye height and width
within 2% error to the ground truth for both metrics. Moreover,
on the synthetic images from the cGAN, it can be observed
that the eye height and width are within 7% and 3% error to
the ground truth, respectively.

To achieve this, our model takes 63 s for one training
iteration of the GAN for the 256×256 sized images, and
images smaller than 256×256 are zero-padded to that size.
Due to lower images being zero-padded, the network training
time is unchanged. However, for higher resolution images
at 512×512, the training time is 113 s due to the increase
of the input image parameters. We observe that the metric
DNN trained on that resolution has similar performance for
the different resolution images, as seen in TABLE I. Notably,
the inference time for the models at the discussed resolutions
is under 1 s.

V. CONCLUSION

This paper presents a method for creating a generative
model for a SerDes receiver with relatively little data. We

Fig. 4. The GASF representation of the time series, the corresponding
ground-truth eye diagram, and the generator’s predicted eye diagram for a
full 256×256 image.

TABLE I
REAL VS SYNTHETIC EYE-DIAGRAM STATISTICS

Eye Height Eye Width
mV % Error ps % Error

Ground Truth 114.9 - 140.5 -
NN 116.6 1.5 138.1 1.7

Generated NN 122.1 6.3 137.2 2.3

achieve this by representing the time series data in the two-
dimensional form of a GASF, which makes the modeling a
domain-transfer task. The training data is diverse in terms of
the bitstreams and channel conditions used. Moreover, we have
shown that the images are similar based on visual inspection,
and to further quantify the results, we have introduced a
neural network to determine the eye characteristics. The eye
height and width predictions are within 7% and 3% error,
respectively, based on the neural network model. Through
our proposed data-driven approach, the overhead required by
engineers to design an IBIS-AMI model is reduced, and the
time that is taken to run simulations is comparable to other
data-driven receiver models.

In future work, the impact of nonlinearities introduced in
the receiver by the CTLE and DFE will be factored into the
modeling methodology.
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