Pooled Coronavirus Testing with Side Information

Junan Zhu,^h Kristina Rivera,ⁿ Cindy Rush,^c and Dror Baronⁿ ^hHarvest Fund, ⁿNC State University, and ^cColumbia University

Paris Machine Learning Meetup May 2020

Motivation

• Fast / efficient / affordable testing of large populations

Conventional testing

- Swab patient for mucus / saliva
- Amplify genetic material with reverse transcription polymerase chain reaction (RT-PCR)
- Test for viral material

- Challenges
 - False negatives / positives
 - Time / resource intense
- Want fast / efficient / affordable testing

Pooled/group testing

- Suppose few people (0.1%? 1%?) are sick
- Pool group of (10?) people's samples together
- All healthy \rightarrow negative pooled test \rightarrow rules out group
- Any sick \rightarrow positive \rightarrow need more information
- Demonstrated for COVID-19 [Kishony et al. 2020]
- Can optimize pool size [Hanel & Thurner 2020]
- Non-adaptive approaches (Tapestry; IIT Bombay; [Ghosh et al. 2020])

• Fragile to false negatives / positives

Proposed approach

- Key idea: Convert to linear algebra
- ρ sickness prevalence
- x binary *input vector*
 - $x_n = 1$ sick; $x_n = 0$ healthy
- Multiply x by binary *measurement matrix* A; rows/cols correspond to measurements / patients
- Matrix vector product w; w_m #sick in measurement m
- *Noisy* y_m depends on w_m zero / nonzero
- <u>Goal</u>: Estimate x from y, A, statistical info (e.g., ρ)

5

Preliminary numerical result

- <u>Contribution</u>: GAMP-based algorithm estimates x with iterative *denoising* [Rangan 2011]
- N=5000 patients; ρ =1% prevalence; M=1000 measurements
- R=M/N=20% measurement rate

- Fast (~1 sec on laptop)
- Iteratively denoises input/output channels

Can we do better?

GAMP with side information

- Earlier goal: Estimate x from y, A, statistical info
- Side information (SI) often available
 - Symptoms affect probability of infection
 - Family members w/ correlated infection status
 - Coworkers sitting nearby
 - Contact tracing

- AMP can use SI in denoiser [Baron et al. 2017, Ma et al. 2019]
- Vector denoisers support dependencies between patients [Donoho et al. 2013, Ma et al. 2014]
- <u>Contribution</u>: Vector denoisers with SI in GAMP

8

Preliminary numerical result

- As before, N=5000 patients; ρ =1% prevalence
- Families SI (family size F=4)
 - $\rho_f{=}1.5\%$ of families infected; $\rho_i{=}2/3$ of individuals within families
- Symptoms SI
 - Families w/symptoms $\rho_1{=}5\%$
 - Families without $\rho_2{=}1\%$
- R below entropy bound
 - SI reduces entropy
- Both types of SI help
- Dependencies more useful

Discussion

- Contributions
 - Convert pooled tests to noisy linear inverse problem
 - GAMP solver
 - Use SI in GAMP; supports dependencies between patients
- Future directions
 - Matrix design
 - Support *very low* false negative rates
 - Part1: use "regular" matrix
 - Part2: retest healthy patients with modified matrix
- More data; more SI; collaborate with PCR people

Thanks!

More details in our paper

Supported in part by National Science Foundation Grant EECS 1611112