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Motivation

o Big, bad, distributed data
a Pervasive computing and sensor nets
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Different communication costs

2 Sensor networks and cloud services are two
seemingly very different settings

o Can we solve both simultaneously?
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Different communication costs

2 Sensor networks and cloud services are two
seemingly very different settings

o Can we solve both simultaneously?

Design r

compression
strategy!

[Yildiz & Scaglione ’08;
Su & El Gamal '10;

Yang et al. '17,

Zhu & coauthors ’16-'17]
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Consensus background
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Distributed average consensus

[DeGroot '74; Borkar & Varaiya ’82; Tsitsiklis '84; Tsitsiklis & Athans '86]

0 Goal: compute sample mean of data distributed
throughout network at every node

“state” at node i
and iterationt = 0

™

number of nodes
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Distributed average consensus
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Vector extension to consensus

[Huang & Hua '11]
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Vector extension to consensus

[Huang & Hua '11]

a0 Each node has vector-valued state ¢;(t) € RY Vi

t =0
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Vector extension to consensus

[Huang & Hua '11]

a0 Each node has vector-valued state ¢;(t) € RY Vi

T — 00
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Vector extension to consensus

[Huang & Hua '11]

a0 Each node has vector-valued state ¢;(t) € RY Vi
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Compression background

Ryan Pilgrim NC STATE UNIVERSITY



[Gersho & Gray '91]

o Quantizer assigns inputs (states) to
representation levels based on partition

representation level i-1 representation level i

I T I T I

| | | >
decision threshold i-1  decision threshold i decision threshold i+1

0 Average distortion D = [ [(Z — ?:’)QI

o Vector quantization (VQ) = multidim.
guantization of vector; achieves lower D
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[Gersho & Gray '91; Cover & Thomas '06]

o Encode representation levels into bits

o Rate R (per symbol) defined as average # bits/source element
o Fixed rate: same # bits for each representation level

o Entropy H = best possible R

o Entropy coding allows R to approach H
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Rate-distortion (RD) theory

[Berger '71; Cover & Thomas '91]

Gaussian RD Function
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Quantized consensus

0 Quantization error issues [Frasca et al. '08]

m

zi(t +1) = 2i(t) + sz'j (Q(z;(1)) — Q(zi(1)))

o Careful state update design needed for convergence
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o Predictive, differential, and Wyner-Ziv lattice coding [vidiz
& Scaglione '08]

o Convergent differential coding approach [Thanou et al. "13]

o Information theory (RD analyses) [vang et al. '17; Su & El Gamal ’10]
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Contributions
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Highlights

o Framework for solving comm. optimization
with mean square error (MSE) constraint

0 Useful for both long-block VQ and scalar
quantization (with/without entropy coding)

0 Heuristic search for fixed-rate coding

2 Numerical results: impact of topology on rates

Ryan Pilgrim NC STATE UNIVERSITY



Assumptions |

2 Multivariate Gaussian distribution

o Assumed stationary

¢1(?) qm ,]

>O\w :
e \/—:— M\W\& )

Ryan Pilgrim NC STATE UNIVERSITY



Assumptions |

0 Broadcast communications
o Static network topology

C3(t)
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Assumptions Il

0 Quantization error modeled as additive noise

Z “ 7
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Sneak peek - technical approach

0 Rate-distortion model given assumptions
o Statistical model
o Optimization problem classification (proof)

0 Heuristic for fixed rate coding
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Operational rate-distortion

o Quantizers of interest have form (high rate):

1 2
— log, (0_> + R., 4 €(0,const.]

2
0, otherwise

Ryan Pilgrim NC STATE UNIVERSITY



Rate-distortion model

a In general,

Ri(t) # Ry(s) <= Dy(t) # Dj(t)

___EEEE &
G Q
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State evolution

o Gaussian =2 {mean, covariance} sufficient stats

0 Used to compute optimization model parameters
(marginal variances and MSE values)

o Marginal variance suffices for fixed-rate and entropy
coding [Widrow & Kollar '08; Gersho Gray ’91]
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Necessary statistics for optimization

2 Need variance, MSE (use marginals)
0 Node index 7, element index 7

vi(D, 1) = var ([¢,(D);)

TanQ /

Qs ()

e P
ok

T MSE(D, t) ZMSE (D, 1)

’L—l

C4 (t)

=1
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Necessary statistics for optimization

2 Need variance, MSE (use marginals)
0 Node index 7, element index 7

vi(D, 1) = var ([¢,(D);)

ETTTED
¢, (1) % o P /
gk
T \o/_,_ MSE(D, t) ZMSE (D, t)

1=1

MSE;(D, t) = E ([Ci(t)]j - % ) [Q(O)]j)
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Cost function

0 Goal: minimize total coding rate used

T—1 m

Rage = ZZR (D, t)

t=0 1=1
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Cost function

0 Goal: minimize total coding rate used

T—1 m

Rage = ZZR (D, t)

t=0 2=1

0 “Aggregate rate”
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Cost function

o Want to minimize (neglecting constraints for now)
T—1 m

> > Ri(D,t)

t=0 1=1

}
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Cost function

o Want to minimize (neglecting constraints for now)

}

T—1 m V; D, Dz
Z {%log2 (%) + R, Vz_(]gt}) € (0, const.]

0, otherwise

}
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Cost function

o Want to minimize (neglecting constraints for now)

t=0 1=
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Key theoretical contribution:
Generalized geometric programming (GGP)
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Cost function transformation

T—1 m

3 S‘ log, (max { ”Z(D( )t) , k}) + R,

tOzl
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Cost function transformation

l Eliminate constants

log, (i‘f ﬁmax{ f) )t) | k})

t=0 =1

Ryan Pilgrim NC STATE UNIVERSITY



Cost function transformation
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Optimization problem

T—1 m

Coe . [ 1% ’i(Dv t) \
4 k >
mm]ljmlze tlzlo J:ll max D, ( t) ; )

subject to MSE(D,T) < MSE”,
Dz(t) >0, Vi,t

/
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Optimization is GGP

[Boyd & Vandenberghe, '04; Boyd et al. '07]
. . ai _a an
2 Monomials flx) =cxitzy® - - xyr,
c>0,2;, >0Vi,a, e RV

k
0 Posynomials  f(z) = > _bigi(z1,..., @), bi > OVi
1=1

a Generalized posynomials formed by +, X, +,”
and max(-)

* only generalized posynomial by monomial division
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Optimization is GGP

0 Generalized geometric programs

minimize  C(x1,...,%y),
T1,...,Tn
subject to  fi(x1,...,zn) <1, Vi,
gi(ibl, o ,.CEn) = 1, \V/Z,
x; >0, Vi

a C, f;’s: generalized posynomials

a g;’s: monomials
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Optimization is GGP

0 Generalized posynomials:

vi(D, 1) = var ([¢;(1)])

MSE;(D,t) =E ([Cz(t)]] - %Z [CZ(O)]J)

1
MSE(D, t) = — » MSE;(D, t)
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0 Recall generalized posynomials formed by +, X, =, max(-)

V,L'(D, t)
D;(t)

(2) k>0 ikmon.imax{

(1) v;(D,t) posy. = pOsy.

Vi

(D, ?) k en. pos

(3) ngn. pPOSy. = gen. posy
T—1 m

=TT T max { Vg?(;;) | k} ger. posy.

t=0 =1
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Key algorithmic contribution:
Search heuristic
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Entropy and fixed-length coding

0 Entropy coding: R~ H(z) € R
0 Fixed-length coding: R € Z~g

2 Question: How to deal with integer constraint?
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Equal-distortion simplification

R;(t) # R;(s) = search space too large!

l

T'—1 m

(v; (D, t
min]ijmize g) };[1 max <\ VZ()(t,) ) : k} :
subject to MSE(D,T) < MSE”,

D(t) >0, WVt
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Search heuristic

0 Key idea: limit size of search space using GGP

solution as a starting point

Trellis formed from GGP solution
[ [ [
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Search heuristic

0 Key idea: limit size of search space using GGP
solution as a starting point

Trellis formed from GGP solution
I I I
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Numerical results
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Numerical results — optimal rates

Optimal rate sequences
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Numerical results — node degree

20

R,gs versus node degree
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Lossless case and excess MSE

0 Lossless case: no distortion (best you can do)

MSEy uees(t) = MSE(D, ¢
lossless () ( )D:O

0 Excess MSE (EMSE) defined as

EMSE(T) = 10log,, MSE(D, T') — 101og;, MSEiossiess (T)
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Numerical results — prior art comparison

Proposed schemes versus predictive, p.=0.45, T=5
7 I I I I I

—¥— Uniform (dithered)
—% Uniform predicted P r| or
°r Predictive <
—#— ECSQ (undithered) art
—v ECSQ predicted

10 ]'Ogl() MSE(D, T) — 10 loglo MSE]OSSIGSS (T)
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Numerical results — prior art comparison

Proposed schemes versus ProgQ, p.=0.45, T=7
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Numerical results — prior art comparison

Proposed schemes versus ProgQ, p.=0.45, T=7
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Conclusions
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0 Proved coding rate optimization in consensus

o Solvable by GGP (some assumptions)

0 Presented search heuristic for fixed-rate coding

2 Scalar quantizer simulations & comparison to
prior art
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a Incorporate differential/predictive coding: can
only do better!

2 Application to distributed algorithms such as
cloud K-SVD [Raja & Bajwa '16]

2 RD for consensus...?
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Thank youl!
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