Coding Rate Optimization for Distributed Average Consensus

Ryan Pilgrim Defense Master of Science in Electrical Engineering North Carolina State University 20 June 2017

Motivation

Ryan Pilgrim

Motivation

- Big, bad, distributed data
- Pervasive computing and sensor nets

NC STATE UNIVERSITY

Different communication costs

- Sensor networks and cloud services are two seemingly very different settings
- Can we solve both simultaneously?

Ryan Pilgrim

Different communication costs

- Sensor networks and cloud services are two seemingly very different settings
- Can we solve both simultaneously?

Design compression strategy! [Yildiz & Scaglione '08;

Su & El Gamal '10; Yang *et al. '*17; Zhu & coauthors '16-'17]

Ryan Pilgrim

Consensus background

Ryan Pilgrim

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

 Goal: compute sample mean of data distributed throughout network at every node

 $z_i(0)$

"state" at node iand iteration t = 0

 ${\mathcal m}$ number of nodes

Ryan Pilgrim

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

 Goal: compute sample mean of data distributed throughout network at every node

t iteration index

NC STATE UNIVERSITY

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

 Goal: compute sample mean of data distributed throughout network at every node

NC STATE UNIVERSITY

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

 Goal: compute sample mean of data distributed throughout network at every node

t iteration index

NC STATE UNIVERSITY

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

 Goal: compute sample mean of data distributed throughout network at every node

NC STATE UNIVERSITY

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

NC STATE UNIVERSITY

[DeGroot '74; Borkar & Varaiya '82; Tsitsiklis '84; Tsitsiklis & Athans '86]

$$\mathbf{z}(t+1) = \mathbf{W}\mathbf{z}(t)$$

NC STATE UNIVERSITY

[Huang & Hua '11]

Ryan Pilgrim

[Huang & Hua '11]

• Each node has vector-valued state $\zeta_i(t) \in \mathbb{R}^L \ \forall i$

Ryan Pilgrim

[Huang & Hua '11]

• Each node has vector-valued state $\zeta_i(t) \in \mathbb{R}^L \ \forall i$

Ryan Pilgrim

[Huang & Hua '11]

• Each node has vector-valued state $\boldsymbol{\zeta}_i(t) \in \mathbb{R}^L \ \forall i$

Ryan Pilgrim

Compression background

Ryan Pilgrim

[Gersho & Gray '91]

Quantizer assigns inputs (states) to representation levels based on partition

Vector quantization (VQ) = multidim. quantization of vector; achieves lower D

Coding

[Gersho & Gray '91; Cover & Thomas '06]

Encode representation levels into bits

Rate *R* (per symbol) defined as average # bits/source element

Fixed rate: same # bits for each representation level

- Entropy H = best possible R
- Entropy coding allows *R* to approach *H*

Rate-distortion (RD) theory

[Berger '71; Cover & Thomas '91]

Ryan Pilgrim

Quantized consensus

Quantization error issues [Frasca et al. '08]

$$z_i(t+1) = z_i(t) + \sum_{j=1}^m w_{ij} \left(Q(z_j(t)) - Q(z_i(t)) \right)$$
$$\mathbf{z}(t+1) = \mathbf{z}(t) + \left(\mathbf{W} - \mathbf{I} \right) Q(\mathbf{z}(t))$$

Careful state update design needed for convergence

Prior art

- Predictive, differential, and Wyner-Ziv lattice coding [Yildiz & Scaglione '08]
- **Convergent differential coding approach** [Thanou *et al.* '13]
- □ Information theory (RD analyses) [Yang et al. '17; Su & El Gamal '10]

Contributions

Ryan Pilgrim

Highlights

Framework for solving comm. optimization with mean square error (MSE) constraint

Useful for both long-block VQ and scalar quantization (with/without entropy coding)

Heuristic search for fixed-rate coding

Numerical results: impact of topology on rates

Assumptions I

Multivariate Gaussian distribution

Assumed stationary

Ryan Pilgrim

Assumptions II

Broadcast communications

Static network topology

Assumptions III

Quantization error modeled as additive noise

Ryan Pilgrim

Sneak peek - technical approach

Rate-distortion model given assumptions

Statistical model

Optimization problem classification (proof)

Heuristic for fixed rate coding

Operational rate-distortion

Quantizers of interest have form (high rate):

$$R(D) \approx \begin{cases} \frac{1}{2} \log_2 \left(\frac{\sigma^2}{D} \right) + R_c, & \frac{D}{\sigma^2} \in (0, \text{const.}] \\ 0, & \text{otherwise} \end{cases}$$

Rate-distortion model

In general,

 $\mathbf{D} := \left[D_1(0) \cdots D_m(0) \cdots D_1(T-1) \cdots D_m(T-1) \right]^\top$

Ryan Pilgrim

□ Gaussian \rightarrow {mean, covariance} sufficient stats

- Used to compute optimization model parameters (marginal variances and MSE values)
 - Marginal variance suffices for fixed-rate and entropy coding [Widrow & Kollar '08; Gersho Gray '91]

Necessary statistics for optimization

Need variance, MSE (use marginals)
 Node index *i*, element index *j*

NC STATE UNIVERSITY

Necessary statistics for optimization

Need variance, MSE (use marginals)
 Node index *i*, element index *j*

NC STATE UNIVERSITY

Goal: minimize total coding rate used

Ryan Pilgrim

Goal: minimize total coding rate used

$$R_{\text{agg}} = \sum_{t=0}^{T-1} \sum_{i=1}^{m} R_i(\mathbf{D}, t)$$

NC STATE UNIVERSITY

"Aggregate rate"

Want to minimize (neglecting constraints for now)

Ryan Pilgrim

Want to minimize (neglecting constraints for now)

Ryan Pilgrim

Want to minimize (neglecting constraints for now)

Key theoretical contribution: Generalized geometric programming (GGP)

Cost function transformation

$$\sum_{t=0}^{T-1} \sum_{i=1}^{m} \frac{1}{2} \log_2 \left(\max\left\{ \frac{\nu_i(\mathbf{D}, t)}{D_i(t)}, k \right\} \right) + R_c$$

 $\prod_{t=0}^{T-1} \prod_{i=1}^{m} \max\left\{\frac{\nu_i(\mathbf{D}, t)}{D_i(t)}, k\right\}$

Ryan Pilgrim

Cost function transformation

Ryan Pilgrim

Cost function transformation

$$\sum_{t=0}^{T-1} \sum_{i=1}^{m} \frac{1}{2} \log_2 \left(\max\left\{ \frac{\nu_i(\mathbf{D}, t)}{D_i(t)}, k \right\} \right) + R_c$$

NC STATE UNIVERSITY

Optimization problem

$$\begin{array}{ll} \underset{\mathbf{D}}{\text{minimize}} & \prod_{t=0}^{T-1} \prod_{i=1}^{m} \max\left\{\frac{\nu_i(\mathbf{D},t)}{D_i(t)},k\right\},\\ \text{subject to} & \operatorname{MSE}(\mathbf{D},T) \leq \operatorname{MSE}^*,\\ & D_i(t) > 0, \ \forall i,t \end{array}$$

Ryan Pilgrim

Optimization is GGP

[Boyd & Vandenberghe, '04; Boyd et al. '07]

Monomials

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n},$$

$$c > 0, x_i > 0 \ \forall i, a_i \in \mathbb{R} \ \forall i$$

NC STATE UNIVERSITY

D Posynomials
$$f(x) = \sum_{i=1}^{k} b_i g_i(x_1, \dots, x_n), \ b_i > 0 \forall i$$

Generalized posynomials formed by +, ×, ÷,* and max(·)

* only generalized posynomial by monomial division

Optimization is GGP

Generalized geometric programs

 $\begin{array}{ll} \underset{x_1,\ldots,x_n}{\text{minimize}} & C(x_1,\ldots,x_n),\\ \text{subject to} & f_i(x_1,\ldots,x_n) \leq 1, \quad \forall i,\\ & g_i(x_1,\ldots,x_n) = 1, \quad \forall i,\\ & x_i > 0, \quad \forall i \end{array}$

C, *f_i*'s: generalized posynomials
 g_i's: monomials

Optimization is GGP

Generalized posynomials:

$$\nu_i(\mathbf{D}, t) = \operatorname{var}\left([\boldsymbol{\zeta}_i(t)]_j \right)$$

$$MSE_{i}(\mathbf{D}, t) = \mathbb{E}\left[\left(\left[\boldsymbol{\zeta}_{i}(t)\right]_{j} - \frac{1}{m}\sum_{i=1}^{m}\left[\boldsymbol{\zeta}_{i}(0)\right]_{j}\right)^{2}\right]$$

$$MSE(\mathbf{D}, t) = \frac{1}{m} \sum_{i=1}^{m} MSE_i(\mathbf{D}, t)$$

NC STATE UNIVERSITY

• Recall generalized posynomials formed by $+, \times, \div, \max(\cdot)$

(1)
$$\nu_i(\mathbf{D}, t) \text{ posy.} \Rightarrow \frac{\nu_i(\mathbf{D}, t)}{D_i(t)} \text{ posy.}$$

(2) $k > 0 \Rightarrow k \text{ mon.} \Rightarrow \max\left\{\frac{\nu_i(\mathbf{D}, t)}{D_i(t)}, k\right\}$ gen. posy.
(3) $\prod \text{ gen. posy.} = \text{ gen. posy}$
 $\Rightarrow \prod_{t=0}^{T-1} \prod_{i=1}^m \max\left\{\frac{\nu_i(\mathbf{D}, t)}{D_i(t)}, k\right\}$ gen. posy.

Key algorithmic contribution: Search heuristic

Ryan Pilgrim

Entropy and fixed-length coding

 \square Entropy coding: $R pprox H(z) \in \mathbb{R}$

• Fixed-length coding: $R \in \mathbb{Z}_{>0}$

Question: How to deal with integer constraint?

Equal-distortion simplification

Search heuristic

Key idea: limit size of search space using GGP solution as a starting point

Ryan Pilgrim

Search heuristic

Key idea: limit size of search space using GGP solution as a starting point

Numerical results

Ryan Pilgrim

Numerical results – optimal rates

Ryan Pilgrim

Numerical results – node degree

Ryan Pilgrim

Lossless case and excess MSE

Lossless case: no distortion (best you can do)

$$MSE_{lossless}(t) = MSE(\mathbf{D}, t)\Big|_{\mathbf{D}=\mathbf{0}}$$

T

NC STATE UNIVERSITY

Excess MSE (EMSE) defined as

 $EMSE(T) = 10 \log_{10} MSE(\mathbf{D}, T) - 10 \log_{10} MSE_{lossless}(T)$

Numerical results – prior art comparison

Ryan Pilgrim

Numerical results – prior art comparison

Ryan Pilgrim

Numerical results – prior art comparison

Ryan Pilgrim

Conclusions

Ryan Pilgrim

Summary

Proved coding rate optimization in consensus
 Solvable by GGP (some assumptions)

Presented search heuristic for fixed-rate coding

Scalar quantizer simulations & comparison to prior art

Future work

Incorporate differential/predictive coding: can only do better!

Application to distributed algorithms such as cloud K-SVD [Raja & Bajwa '16]

NC STATE UNIVERSITY

RD for consensus...?

Thank you!

Ryan Pilgrim

References

- 1. M. H. DeGroot, "Reaching a consensus," *J. Amer. Statist. Assoc.*, vol. 69, no. 345, pp. 118–121, 1974.
- 2. V. Borkar and P. Varaiya, "Asymptotic agreement in distributed estimation," *IEEE Trans. Autom. Control*, vol. AC-27, no. 3, pp. 650–655, Jun. 1982.
- J. N. Tsitsiklis, "Problems in decentralized decision making and computation," PhD thesis, Massachussetts Inst. Technol., Cambridge, MA, Nov. 1984.
- J. Tsitsiklis, D. Bertsekas, and M. Athans, "Distributed asynchronous deterministic and stochastic gradient optimization algorithms," *IEEE Trans. Autom. Control*, vol. 31, no. 9, pp. 803–812, Sep. 1986.
- 5. Y. Huang and Y. Hua, "On energy for progressive and consensus estimation in multihop sensor networks," *IEEE Trans. Signal Process.*, vol. 59, no. 8, pp. 3863–3875, Aug. 2011.
- 6. A. Gersho and R. M. Gray, *Vector Quantization and Signal Compression*. Norwell, MA: Kluwer, 1993.
- 7. T. Berger, *Rate Distortion Theory: Mathematical Basis for Data Compression*. Englewood Cliffs, NJ: Prentice-Hall, 1971.
- 8. T. M. Cover and J. A. Thomas, *Elements of Information Theory*. New York, NY, USA: Wiley-Interscience, 1991.

Ryan Pilgrim

References

- 9. P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, "Average consensus on networks with quantized communication," *Int. J. Robust Nonlinear Control*, vol. 19, no. 16, pp. 1787–1816, Nov. 2008.
- 10. M. E. Yildiz and A. Scaglione, "Coding with side information for rate-constrained consensus," *IEEE Trans. Signal Process.*, vol. 56, no. 8, pp. 3753–3764, Aug. 2008.
- 11. ——, "Limiting rate behavior and rate allocation strategies for average consensus prob-lems with bounded convergence," in *Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP)*, Apr. 2008, pp. 2717–2720.
- D. Thanou, E. Kokiopoulou, Y. Pu, and P. Frossard, "Distributed average consensus with quantization refinement," *IEEE Trans. Signal Process.*, vol. 61, no. 1, pp. 194–205, Jan. 2013.
- Y. Yang, P. Grover, and S. Kar, "Rate distortion for lossy in-network function computation: Information dissipation and sequential reverse water-filling," *IEEE Trans. Inf. Theory*, vol. PP, no. 99, pp. 1–29, May 2017.
- 14. H.-I. Su and A. El Gamal, "Distributed lossy averaging," *IEEE Trans. Inf. Theory*, vol. 56, no. 7, pp. 3422–3437, Jul. 2010.
- 15. H. Raja and W. U. Bajwa, "Cloud K-SVD: A collaborative dictionary learning algorithm for big, distributed data," *IEEE Trans. Signal Process.*, vol. 64, no. 1, pp. 173–188, Jan. 2016.

Ryan Pilgrim