
ABSTRACT

ZHU, JUNAN. Statistical Physics and Information Theory Perspectives on Linear Inverse Problems.
(Under the direction of Dror Baron.)

Many real-world problems in machine learning, signal processing, and communications assume

that an unknown vector x is measured by a matrix A, resulting in a vector y=Ax+z, where z denotes

the noise; we call this a single measurement vector (SMV) problem. Sometimes, multiple dependent

vectors x( j ), j ∈ {1, · · · , J }, are measured at the same time, forming the so-called multi-measurement

vector (MMV) problem. Both SMV and MMV are linear models (LM’s), and the process of estimating

the underlying vector(s) x from an LM given the matrices, noisy measurements, and knowledge

of the noise statistics, is called a linear inverse problem. In some scenarios, the matrix A is stored

in a single processor and this processor also records its measurements y; this is called centralized

LM. In other scenarios, multiple sites are measuring the same underlying unknown vector x, where

each site only possesses part of the matrix A; we call this multi-processor LM. Recently, due to

an ever-increasing amount of data and ever-growing dimensions in LM’s, it has become more

important to study large-scale linear inverse problems. In this dissertation, we take advantage of

tools in statistical physics and information theory to advance the understanding of large-scale

linear inverse problems. The intuition of the application of statistical physics to our problem is

that statistical physics deals with large-scale problems, and we can make an analogy between

an LM and a thermodynamic system [Tan02; GV05; Krz12a; Krz12b; MM09; BK15]. Therefore, we

can apply statistical physics analysis tools as well as algorithmic tools into understanding large-

scale LM’s and their corresponding linear inverse problems. In terms of information theory [CT06],

although it was originally developed to characterize the theoretic limits of digital communication

systems, information theory was later found to be rather useful in analyzing and understanding other

inference problems. We use some of the concepts and ideas of information theory to understand

the theoretic performance limits in various aspects of linear inverse problems.

There exist numerous algorithms for solving linear inverse problems. However, only a partial

understanding of the theoretic characterization of the minimum mean squared error (MMSE) when

solving linear inverse problems appears in the literature [Ran12; Tan02; GV05]. Such a theoretic

analysis helps practitioners appreciate the gap between their estimation quality and the theoretically

optimal quality. Therefore, in this dissertation we use the replica analysis [Tan02; GV05; MT06;

Krz12a; Krz12b; MM09; BK15; Les15] from statistical physics to study the MMSE in MMV problems.

We obtain different performance regions in which the MMSE behaves differently. Besides the quality

of the estimation, there are also other “costs” that practitioners might care about, especially in the

big data era. Some prior art has focused on reducing certain costs such as the communication

cost [Han14] and the computation cost [Ma14c], but there has been less progress relating different



costs and achieving optimal trade-offs among them. Despite the lack of such works, these trade-offs

are important to system designers in order to produce efficient systems. To address these issues, in

this dissertation we use a distributed algorithm as an example and study the behavior of the optimal

communication scheme in the limit of low excess mean squared error beyond the MMSE for that

distributed algorithm. Furthermore, we study the optimal trade-offs among the computation cost,

the communication cost, and the quality of the estimate.

Finally, we discuss estimation algorithm design for an SMV setting. There are numerous esti-

mation algorithms for SMV in the prior art, but they all require some statistical knowledge about

the underlying vector x; in a practical setting, such knowledge might be inaccurate or unavailable.

Therefore, it is important to design a universal estimation algorithm that is more agnostic to the

prior knowledge of the unknown vector x. In this dissertation, we design an algorithmic framework

based on Markov chain Monte Carlo (MCMC) borrowed from statistical physics, and in extensive

numerical experiments the algorithm achieves a mean squared error that is close to the MMSE.
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CHAPTER

1

INTRODUCTION

Many problems in science and engineering can be approximated as linear, where an unknown

vector x ∈RN is measured via a matrix multiplication, w=Ax, with A being an M ×N matrix. The

measurements y are collected after w is corrupted by measurement noise z ∈RM ,

y=Ax+ z. (1.1)

In some machine learning problems, the training set consists of A and y, where A contains the

features and y contains the outcomes [Ric07; McM13]; x is usually called the coefficient vector that

describes the relation between the features and the outcomes. In signal processing, A describes the

signal acquisition system, y contains the measurements, and x is the underlying signal [Don06a].

For communication systems such as CDMA, the matrix A contains the spreading sequences that

spread the input (channel) symbol from each user, and then the receiver mixes the spread symbols

from different users and obtains y [GV05]. The input symbols from different users at a certain time

interval form the vector x. For ease of presentation, we call the underlying input vector x the signal,

A the measurement matrix, and y the measurements vector. In the following, we introduce several

variants of our setting (1.1) and then discuss the prior art in solving the linear models.
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1.1 Linear Models and Linear Inverse Problems

1.1.1 Problem setting

There are some variants of linear models (LM’s). Based on how the measurements y and the matrix

A are stored, we form centralized LM’s or multi-processor LM’s. We can also define linear models

based on the number of underlying unknown vectors x: if there is only one unknown vector x, then

it is a single measurement vector (SVM) problem; if there are more than one unknown vector x, then

we form a multi-measurement vector (MMV) problem.

Centralized vs. multi-processor LM’s: If the matrix A and the measurements y in (1.1) are stored

in a single processor, then we call the LM a centralized LM. Recently, there is an increasing amount

of data being generated in various applications. For example, the trend of relying on Internet

services and social networks is more prevalent than ever before; users of web services are generating

numerous log files daily. As another example, financial analysts need to predict the changes in

prices based on historical price information. Given the amount of financial derivatives and the high

frequency of changes in prices, financial institutions are also overwhelmed by a vast amount of data.

Another example involves recent advances in wearable devices. Health care providers can provide

patients with wearable sensors that record and report the health status of patients frequently, so

that the health care providers can react quickly once there is an emergency. With these ever-growing

amounts of data, it is no longer practical to fit these data into a single machine, and distributed and

scalable file systems such as Hadoop Distributed File Systems (HDFS) [DG08] have been developed.

For the case of LM, if the matrix A and the measurements y are so big that they have to be stored in a

distributed file system such as HDFS, then we form a multi-processor (MP) LM [Mot12; Pat13; Pat14;

Han14; Han15b; Rav15; Han15a; Han16]. Consider an MP-LM with P distributed processor nodes

and a fusion center. Each distributed processor node stores M
P rows of the matrix A, and acquires

the corresponding measurements of the underlying signal x. Without loss of generality, the LM in

distributed processor node p ∈ {1, · · · , P } can be written as

yi =Ai x+ zi , i ∈
§

M (p −1)
P

+1, · · · ,
M p

P

ª

, (1.2)

where Ai is the i -th row of A, and yi and zi are the i -th entries of y and z, respectively.

Single measurement vector vs. multiple measurement vectors: Apart from the MP-LM, an-

other type of distributed linear model involves multiple sensors. Using multiple sensors can acceler-

ate the sensing speed by pointing different sensors at different regions of interest, which we call

distributed sensing [Dua06; HN06; Bar06]. In distributed sensing, suppose that J sensors are measur-

ing J signal vectors, x(1), · · · , x(J ). Each signal vector x( j ) is measured by a matrix A( j ), which models

the sensing mechanism of each sensor, and the measurements y( j ) are corrupted by independent

2



and identically distributed (i.i.d.) noise z( j ),

y( j ) =A( j )x( j )+ z( j ), j ∈ {1, · · · , J }, (1.3)

where the ( j ) in the super-script denotes the index of the corresponding sensor. Of particular

interest in reducing the number of measurements while achieving similar signal estimation quality,

distributed sensing leads to a proliferation of research on the MMV problem [CH06; Cot05; ME09;

BF09], in which the J sparse signal vectors x( j ), j ∈ {1, · · · , J }, share common non-zero supports,

as explained below. Let us construct a super-symbol xl =
�

x (1)l , · · · , x (J )l

�>
, where {·}> denotes the

transpose, and x
( j )
l is the l -th entry of the signal vector x( j ). The super-symbols xl , l ∈ {1, · · · , N },

follow an i.i.d. J -dimensional joint distribution,

f (xl ) =ρφ(xl ) + (1−ρ)δ(xl ), (1.4)

where ρ is the sparsity rate,φ(xl ) is a J -dimensional joint distribution, and δ(xl ) is the Dirac delta

function for J -dimensional vectors. When the number of signal vectors becomes 1, i.e., J = 1, this

MMV problem (1.3) becomes an SMV problem. The MMV problem has many applications such as

radar array signal processing, acoustic sensing with multiple speakers, magnetic resonance imaging

with multiple coils [Jun07; Jun09], and diffuse optical tomography using multiple illumination

patterns [Lee11].

Linear inverse problem: Usually, estimation algorithms need to be designed to estimate the

signal x given the matrix A, noisy measurements y, and possible statistical knowledge about the

noise z. We call this a linear inverse problem.

In this work, we focus on the large system limit defined below.

Definition 1.1 (Large system limit [GW08]). The signal length N scales to infinity, and the number

of measurements M =M (N ) depends on N and also scales to infinity, where the ratio approaches a

positive constant κ,

lim
N→∞

M (N )
N

= κ> 0.

We call κ the measurement rate.

1.1.2 Prior art and open questions

Linear models are widely studied and find extensive real-world applications. Over the years, people

have developed various algorithms to solve the underlying signal vectors for linear models. Many

estimation algorithms pose a sparsity prior on the signal x or the coefficient vector θ [Can06; Don06a;

Fig07], where θ =W−1x, and W is called the sparsifying transform that renders a sparse coefficient

vector θ . A second, separate class of Bayesian algorithms to solve the linear inverse problem poses
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a probabilistic prior for the coefficients of x in a known transform domain [Don10; Ran11; Ji08;

SN08; Bar10]. Given a probabilistic model, some related message passing approaches learn the

parameters of the signal model and achieve the minimum mean squared error (MMSE) in some

settings; examples include EM-GM-AMP-MOS [VS13], turboGAMP [Zin12], and AMP-MixD [Ma14b].

As a third alternative, complexity-penalized least square methods [FN03; Don06b; HN06; HN12;

RS12a] can use arbitrary prior information on the signal model and provide analytical guarantees,

but are only computationally efficient for specific signal models, such as the independent-entry

Laplacian model [HN06]. For example, Donoho et al. [Don06b] relies on Kolmogorov complexity,

which cannot be computed [CT06; LV08]. As a fourth alternative, there exist algorithms that can

formulate dictionaries that yield sparse representations for the signals of interest when a large

amount of training data is available [RS12a; Aha06; Mai08; Zho12]. When the signal is non-i.i.d.,

existing algorithms require either prior knowledge of the probabilistic model [Zin12] or the use of

training data [GO07]. In spite of the numerous algorithms to solve the linear inverse problem, there

are many important gaps in the prior art, such as those listed below.

1. What is the best we can do? Along with existing algorithms for solving linear inverse problems,

researchers often provide theoretic estimation accuracy guarantees for these algorithms.

However, what is often missing is the optimal estimation quality associated with the linear

inverse problem itself, instead of the optimal estimation quality for a specific algorithm. Such

a theoretic analysis will help us evaluate the quality of each algorithm and identify the gap

between a specific algorithm and the theoretically optimal estimation quality.

2. What are the costs of running an algorithm? Nowadays, due to the large amounts of data

mentioned in Section 1.1.1, many systems are designed in a distributed fashion. Hence,

estimation algorithms need to run in a distributed network and thus incur communication

costs. There exists some work trying to save communication by designing cache systems so

that each node in the network does not need to send every piece of data every time [Li15; Li16].

There are also some works using heuristics in reducing the precision of the floating-point

numbers sent across the network [McM13; Tha13]. However, there is little prior art discussing

the “optimal” communication scheme.

3. Better algorithms? At the beginning of this section, we briefly discussed some classes of

algorithms. In certain cases, one might not be certain about the structure or statistics of

the signal prior to estimation. Uncertainty about such structure may result in a sub-optimal

choice of the sparsifying transform W, yielding a coefficient vector θ that requires more

measurements to achieve reasonable estimation quality; uncertainty about the statistics of

the signal will make it difficult to select a prior or model for Bayesian algorithms. Thus, we

think that a “better” algorithm should be more agnostic to the particular statistics of the signal

while still achieving reasonable estimation results.
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1.1.3 Contributions

In the following, we briefly discuss our contributions corresponding to each of the unsolved problems

raised in Section 1.1.2. Most of our contributions are made possible by taking advantage of statistical

physics tools and information theory.

1. Characterizing the optimal estimation quality: In Chapter 3, we make an analogy between

the MMV problem (1.3) and a thermodynamic system and use the replica analysis [Tan02;

GV05; MT06; Krz12a; Krz12b; MM09; BK15; Les15] from statistical physics to analyze the

information theoretic MMSE for MMV problems with i.i.d. Gaussian measurement matrices

and i.i.d. Gaussian noise. Our analysis is readily extended to other i.i.d. measurement matrices

and i.i.d. measurement noise. Note that the MMSE is associated with the MMV problem (1.3)

itself and is not associated with any specific estimation algorithms. Realizing that mean

squared error (MSE) might not be the only metric that is of interest, we propose a future

direction to extend the work of Tan and coauthors [Tan14a; Tan14b] to analyze the average

error based on arbitrary user-defined error metrics for MMV problems.

2. Optimal trade-offs among different costs: In Chapter 4, we apply rate-distortion theory [CT06;

Ber71; GG93; WV12a] to optimize the communication cost in a specific distributed algorithm,

and propose a method to find the optimal combined cost of computation and communication.

In addition, we study the asymptotic behavior of the optimal communication scheme in the

limit of low excess MSE beyond the MMSE. Also, recognizing that we cannot minimize the

computation cost, communication cost, and the quality of the estimate simultaneously, we

study the optimal trade-offs among these different costs.

3. Designing better algorithms: In Chapter 5, we propose a universal algorithm that is based

on the mild assumption of the signal being “simple,” i.e., there is some structure in the signal

that is simple. Our algorithm is based on “simulated annealing,” a mathematical analogy to a

statistical physics concept, and achieves favorable estimation accuracy while using limited

prior information about the signal models. In Chapter 5, we also briefly discuss another

universal algorithm that is based on belief propagation [Don09; Bar10; BM11; Mon12; Krz12a;

Krz12b; BK15], which originates from statistical physics and information theory. We refer

interested readers to Ma et al. [Ma14a; Ma16].

The underlying intuition of why statistical physics and information theory can be useful in

tackling our problems is that they both deal with large systems, and fortunately, the problems that we

are targeting in this dissertation are indeed large systems. Moreover, the general formulations of our

problems create analogies between our problems and thermodynamic systems and communication

systems, so that we can take advantage of the existing analytical and algorithmic tools in the rich

fields of statistical physics and information theory.

5



1.2 Organization, Notations, and Acronyms

1.2.1 Organization

This dissertation is organized as follows. Chapter 2 introduces some background on statistical physics

and information theory. Chapter 3 studies the MMSE and its behavior for MMV problems; we also

propose a future direction to study arbitrary user-defined error metrics for MMV problems. The

limiting behavior of the optimal communication scheme and the optimal trade-offs among different

costs in MP-LM’s are discussed in Chapter 4. In Chapter 5, we propose a universal algorithmic

framework that achieves favorable estimation quality. Chapter 6 concludes the dissertation and

proposes some future directions. Details about some proofs appear in the appendices.

Note that Chapter 3 is based on our work with Baron [ZB13]and with Baron and Krzakala [Zhu16b].

Chapter 4 is based on our work with Han et al. [Han16] and with Baron and Beirami [Zhu16c; Zhu16a].

Chapter 5 is based on our work with Baron and Duarte [Zhu14; Zhu15].

1.2.2 Notations

In this dissertation, bold capital letters represent matrices, bold lower case letters represent vectors,

and normal font letters represent scalars. The entry (scalar) in the i -th row, j -th column of a matrix A

is denoted by Ai , j , where the comma is often omitted. The i -th entry (scalar) in a vector z is denoted

by zi . Following are some frequently used notations.

• A: Measurement matrix

• C: The set of complex numbers

• D : Distortion

• δ(·): Dirac delta function

• f (·): Probability density function (continuous variable)

• E[·]: Expectation

• κ: Measurement rate

• M : Number of measurements

• N : Signal length

• N: The set of natural numbers, i.e., {0, 1, · · · }

• N (µ,σ2): Gaussian distribution with mean µ and varianceσ2
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• R : Coding rate

• R: The set of real numbers

• P: Probability

• P(·): Probability mass function (discrete variable)

• ρ: Sparsity rate (percentage of non-zeros in a vector)

• σ2
Z : Variance of the noise z

• t : Iteration index

• A>: Transpose of matrix A

• x: Signal

• ‖x‖p : `p norm of a vector x; if p is not specified, then we refer to `2 norm

• y: Measurements

• z: Noise

• [x1, x2, · · · , xN ]: The vector consists of x1, x2, · · · , xN

• {1, 2, · · · , N }: The set consists of 1, 2, · · · , N

1.2.3 Acronyms

• AMP: Approximate message passing

• BP: Belief propagation

• CS: Compressed sensing

• i.i.d.: Independent and identically distributed

• LM: Linear model

• MMSE: Minimum mean squared error

• MMV: Multi-measurement vector

• MP: Multi-processor

• MSE: Mean squared error
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• PMF: Probability mass function

• RD: Rate-distortion

• SDR: Signal-to-distortion ratio

• SMV: Single measurement vector

• SNR: Signal-to-noise ratio
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CHAPTER

2

STATISTICAL PHYSICS AND

INFORMATION THEORY BACKGROUND

In Chapter 1, we discussed the prior art and mentioned that our contributions are made possible

by tools in statistical physics and information theory. Due to the interdisciplinary nature of this

dissertation, this chapter briefly reviews some concepts and methodologies that are used in our

work. We refer readers who are interested in delving into these subjects to the books by Mézard and

Montanari [MM09] and by Cover and Thomas [CT06].

2.1 Relevant Statistical Physics Concepts

Statistical physics studies a disordered thermodynamic system containing a large number of parti-

cles that are interacting with each other by the internal force between (among) the particles as well

as the external force applied to the entire disordered system.

2.1.1 Basics

In this section, we briefly introduce some concepts that are frequently used in statistical physics.
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Entropy (thermodynamics): Entropy quantifies the amount of disorder of a thermodynamic

system,

S (x) =−
∑

x

P(x) logP(x), (2.1)

where the vector x describes the configuration of a certain thermodynamic system and P(x) is the

probability of a certain configuration existing in the disordered system. By summing over all possible

configurations and accounting for their corresponding probability, we are able to obtain the level of

disorder, or the entropy of this particular thermodynamic system.

Boltzmann distribution: In a thermodynamic system, the higher the temperature is, the more

disordered the system is. The Boltzmann distribution is a probability distribution used to describe

various possible configurations in a thermodynamic system,

P(x) =
1

Z
exp

�

−
H (x)

T

�

, (2.2)

where the vector x describes the configuration of a thermodynamic system, T is the temperature of

this system, H (x) is the energy for a certain configuration, and Z is a normalizer called the partition

function. If the thermodynamic system is in a high temperature, i.e., T is large, then the probabilities

for configurations with different energy are approximately the same and the system reaches the

maximum entropy (2.1), which corresponds to the greatest amount of disorder.

Annealing and quench: The configuration associated with the lowest energy can be obtained

through a process called annealing, where a disordered system gradually cools down. Intuitively,

when the temperature T decreases, the configurations with lower energy becomes more and more

likely in the disordered system, according to (2.2). Given enough time that allows a slow enough

decrease in the temperature, we can guarantee to obtain the globally minimum energy configuration.

A related concept is quench, in which the temperature is quickly decreased, so that the disordered

system is likely to achieve a local minimum energy configuration. Since the temperature is quickly

decreased, once a local minimum energy configuration appears, it will be difficult to generate other

lower energy configurations according to (2.2).

2.1.2 Spin glass theory basics

A basic understanding of spin glass theory provides new perspectives when solving linear inverse

problems. In the following, we introduce some basics of spin glass theory. The goal is to provide

intuition, and we refer interested readers to Mézard and Montanari [MM09] for rigorous and detailed

explanations.

Mean-field spin glasses: As discussed in Section 2.1.1, the thermodynamic system we are in-

terested in contains many particles. A simple model in the mean-field spin glass theory models

each of the particles as a spinning glass, where each glass has two spinning states. In this simple

10



Figure 2.1 Illustration of spin glasses with internal and external forces. Each dot represents a spin glass. Vertical
arrows denote the state of each glass. The remaining arrows illustrate the internal forces between pairs of
spin glasses and the curve in the bottom panel illustrates the external force. Figure inspired by Ralf R. Müller.

model, there exist internal forces between each pair of the spinning glasses. Moreover, we assume

that there is an external force that can affect the states of the glasses. Hence, the overall energy of a

specific thermodynamic system for a specific configuration x is

H (x) =−
∑

i

∑

j<i

ri j xi x j −
∑

i

hi xi , (2.3)

where xi is the i -th element of the configuration (vector) x and it represents the state of the i -th

glass, ri j models the force between glass i and glass j , and hi models the external force applied to

glass i . This model is illustrated in Figure 2.1, where each dot represents a glass, and the vertical

arrows denote the state of each glass. The remaining arrows illustrate the internal forces between

pairs of spin glasses and the curve in the bottom panel illustrates the external force. The energy

function (2.3) is often called the Hamiltonian. Note that the Hamiltonian (2.3) is quenched, because

we assume that ri j and hi are constant.

One of the things that nature does is maximizing the entropy (2.1) of a thermodynamic system

for a given energy (because energy is assumed to be conserved),

E =
∑

x

P(x)H (x). (2.4)

It can be proved that the Boltzmann distribution (2.2) maximizes the entropy (2.1) for a given

energy (2.4). Moreover, the energy H (x) in the Boltzmann distribution (2.2) is the Hamiltonian for

configuration x (2.3).

Free energy and self-averaging: Sometimes, instead of (mathematically) evaluating the maxi-

mum entropy (2.1), it is more convenient to evaluate the minimum free energy given by

F = E −TS . (2.5)
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Using (2.1), (2.2), and (2.4) with normalization by the number of spin glasses N , we simplify (2.5) as

F =−
T

N
log Z , (2.6)

where the partition function Z is the normalizer in (2.2). Note that because the Hamiltonian (2.3) is

quenched, the free energy (2.6) is quenched.

The expression in (2.6) is undesirable, because we have to calculate the free energy for each

of the quenched Hamiltonians. Physically, it means that we need to carry out this calculation for

every specific piece of material. It turns out that when the size of the system is sufficiently large, the

properties of the system do not depend on the specific settings of ri j and hi any more (2.3), which is

the so-called self-averaging property of a thermodynamic system, given sufficiently many particles.

Hence, we define the free energy as

F =− lim
N→∞

T

N
E
�

log Z
�

. (2.7)

2.2 Information Theory and Coding Theory

This section discusses some important results from information theory and coding theory that

are relevant to this dissertation. The author refers interested readers to the book by Cover and

Thomas [CT06] for further details and more comprehensive explanations. Coding theory and in-

formation theory are quite related and are both widely used in digital communication systems,

and we simply call them “information theory” for brevity. Seeing that information theory is widely

used in digital communication systems, we start by introducing the components of a typical digital

communication system. But before that, we must understand the most basic of concepts: the bit.

Bit: A bit is a unit that can represent two states. We could call these two states 0 and 1, or -1 and

+1, and so on. Why are bits so important? Before entering the digital world, people used analog

electronics. One of the key challenges was the noise in the signal. For example, in order to represent

a number 1.2, a waveform of magnitude 1.2 needs to be formed and transmitted. However, due to

various noise and distortions, what the receiver receives is not exactly 1.2, which is undesirable. In

the digital world, devices use sequences of bits to represent a number such as 1.2. The advantage

of digital electronics is that they use “bits” that only have two states: the circuit is either on or off.

The recognition and identification of a bit are much easier than recognizing and identifying analog

waveforms. Information theory provides theoretical bounds for various errors when using bits, and

proves that by using bits a digital communication system can exploit the communication channel

as well as an analog communication system does. Moreover, information theory develops many

techniques to achieve these theoretical bounds.
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Figure 2.2 Illustration of a typical digital communication system. Figure inspired by Brian Hughes’ slides.

Components of a digital communication system: As illustrated in Figure 2.2, there are 7 key

components of a typical digital communication system. First, the signal is encoded (compressed),

so that the communication system does not need to send as many bits as required by the original

signal; this step is called source encoding. Then, the encoded (compressed) signal is passed through

a channel encoder, in which redundancy is introduced to the bit sequence. This redundancy is

crucial to better utilize the energy of the transmitter and the channel. Next, the redundant sequence

is modulated to an analog waveform by one of the available modulation schemes. After modulation,

the transmitter sends the modulated signals (analog) through a noisy channel and the receiver

receives a noisy sequence that contains the information of the original signal. Then, the receiver

demodulates the noisy analog waveform into a sequence of bits. After that, the receiver decodes

(channel decoder) the sequence to remove redundancy.1 Finally, with an error-free (hopefully)

sequence of bits, the last step is to decompress the data.

Link between statistical physics and information theory:2 In Section 2.1, we denote the config-

uration of a thermodynamic system by a vector x= [x1, · · · , xN ], where xi , i ∈ {1, · · · , N }, represents

the state of the i -th spin glass. In information theory, we typically use x= [x1, · · · , xN ] to represent a

length-N signal. This signal x is passed through a channel. The counterparts of the channel in digital

communication systems for statistical physics are the internal and external forces that interact

with the particles of the thermodynamic system. With this brief analogy, we start introducing some

important concepts and results in information theory.

Entropy (information theory): We have introduced entropy (2.1) in statistical physics. In infor-

mation theory, entropy quantifies the amount of information carried by a certain signal x. If the

entries of x take discrete values, then the expression for entropy in information theory is the same

as (2.1), and the only difference is that P(x) represents the joint probability mass function of a signal

1There will be errors in the demodulated sequence. By introducing redundancy in the channel encoding step, the
channel decoder can identify and correct errors due to the noisy channel.

2Interested readers may want to refer to Merhav [Mer10].
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x. If the entries of x are continuous, then the entropy in information theory for a signal x is

S (x) =−
∫

x

f (x) log[ f (x)]d x, (2.8)

where f (x) is the joint probability density function of x.

Coding rate (source encoder): Before transmitting the signal x ∈RN to the receiver, a commu-

nication system typically first compresses the signal, so that it can save in communication load. The

coding rate is defined as

R =
Number of bits after compression

N
. (2.9)

Distortion: After receiving the encoded signal,3 the receiver needs to decode it. There are two

types of data compression that can be used in the source encoder. One is lossless compression and

the other is lossy compression. In lossless compression, after the source decoder decodes the data

sequence, it obtains a signal that is identical to the original signal. In lossy compression, the signal

obtained after decoding is somewhat distorted from the original signal. The cause of this distortion

is the quantization process when encoding the signal in a lossy way. A typical quantizer builds a

“grid” in the space of value(s) to be quantized. Next, the quantizer rounds the value(s) to the nearest

point on the grid. As an example, the scalar quantizer [GG93; CT06] rounds each (scalar) entry in

the signal to the nearest grid point. The vector quantizer [Lin80; Gra84; GG93] rounds sequence of

scalars to the nearest hyper-grid point.

Denote the distance between a certain entry in the original signal xi and the corresponding

entry in the decoded signal bxi by d (xi , bxi ), where we can use various distance functions [Kre89] for

d (·, ·). The average distortion of the entire signal is given by

D =
1

N

N
∑

i=1

d (xi , bxi ). (2.10)

Rate-distortion theory: There is a fundamental information theoretic relation between the

rate (2.9) and distortion (2.10). With a certain quantization scheme and knowledge about the distri-

bution of the signal, we can calculate the coding rate R (2.9) and the expected distortion D (2.10).

Although this calculation is not always an easy task [Ari72; Bla72; Ros94], a pivotal message from

rate-distortion theory is that we can save a lot in the coding rate R (2.9) by allowing a small distortion

D (2.10).

Cavity method and belief propagation: We can regard the linear model in (1.1) as a communi-

cation channel, where x is the signal to be transmitted, A models the transmission scheme, z is the

3According to Figure 2.2, after data compression and before transmitting the sequence, there is typically a channel
encoding step, which helps to exploit the channel to a greater extent. Here, we assume perfect channel decoding. Interested
readers can refer to Cover and Thomas [CT06].
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Figure 2.3 Illustration of belief propagation. The boxes are called the factor nodes and the circles are called
the variable nodes.

noise in the receiver, and y is the received sequence. Belief propagation (BP) [Don09; Bar10; BM11;

Mon12; Krz12a; Krz12b; BK15] is an algorithm that can be used to infer the underlying signal x in the

channel (1.1). BP was invented independently by researchers in coding theory, statistical physics,

and artificial intelligence. First of all, we represent the channel (1.1) as a Tanner graph in Figure 2.3,

where we express each entry x j of the signal x by a variable node (circles in Figure 2.3), driven by its

distribution f (x j ) from a factor node (boxes in Figure 2.3). Then, variable nodes are interacting with

the factor nodes yi ’s.

The messages mi→ j (x j ) and m j→i (x j ) given by the canonical BP updating rules for the posterior

distribution f (x|y) are as follows,

mi→ j (x j ) =
1

Zi→ j

∫





∏

k 6= j

mk→i (xk )



e
− 1

2σ2
Z

�

∑

k 6= j Ai k xk+Ai k xk−yi

�2





∏

k 6= j

d xk



 ,

m j→i (x j ) =
1

Z j→i
f (x j )

∏

q 6= j

mq→ j (x j ).

(2.11)

Note that in statistical physics, the factor nodes model the forces between (or among) spin glasses

(variable nodes). When A is sparse or locally tree-like, BP yields an estimate that converges to the

true posterior distribution f (x|y). With this posterior distribution, we obtain the estimate bx=E[x|y]
of the original signal that achieves the smallest mean squared error [Ran11].
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CHAPTER

3

MINIMUM MEAN SQUARED ERROR FOR

MULTI-MEASUREMENT VECTOR

PROBLEM

The multi-measurement vector (MMV) problem (1.3) considers the estimation of a set of sparse sig-

nal vectors that share common supports, and has applications such as radar array signal processing,

acoustic sensing with multiple speakers, magnetic resonance imaging with multiple coils [Jun07;

Jun09], and diffuse optical tomography using multiple illumination patterns [Lee11]. In this chapter,

which is based on our work with Baron [ZB13] and with Baron and Krzakala [Zhu16b], two related

MMV settings are studied. In the first setting, each signal vector is measured by a different indepen-

dent and identically distributed (i.i.d.) measurement matrix, while in the second setting, all signal

vectors are measured by the same i.i.d. matrix. Although there are many algorithms [Dua13; Tro06b;

CH06; Mal05; Tro06a; Cot05; ME09; Lee12; Ye15; ZS11] for solving the unknown vectors in the MMV

problem (1.3), the performance limits of MMV signal estimation in the presence of measurement

noise have not been studied. In this chapter, replica analysis [Tan02; GV05; MT06; Krz12a; Krz12b;

MM09; BK15; Les15], borrowed from statistical physics, is performed for these two MMV settings,

and the minimum mean squared error (MMSE), which turns out to be identical for both settings,

is obtained as a function of the noise variance and number of measurements. To showcase the

application of MMV models, the MMSE’s of complex single measurement vector (SMV) problems
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with both real and complex measurement matrices are also analyzed. Multiple performance regions

for MMV are identified where the MMSE behaves differently as a function of the noise variance and

the number of measurements.

Belief propagation (BP) is a signal estimation framework for linear inverse problems that often

achieves the MMSE asymptotically. A phase transition for BP is identified. This phase transition,

verified by numerical results, separates the regions where BP achieves the MMSE and where it is

sub-optimal. Numerical results also illustrate that more signal vectors in the jointly sparse signal

ensemble lead to a better phase transition.

Realizing that the mean squared error might not be the only error metric that is of interest, we pro-

pose some future directions involving the study of optimal performance for arbitrary user-defined

additive error metrics for MMV problems by extending the work of Tan and coauthors [Tan14a;

Tan14b].

3.1 Related Work and Contributions

In multi-measurement vector (MMV) problems, thanks to the common support, the number of

sparse coefficients that can be successfully estimated increases with the number of measure-

ments. This property was evaluated rigorously for noiseless measurements using `0 minimiza-

tion [Dua13]. To address measurement noise, estimation approaches for MMV problems have

included greedy algorithms such as SOMP [Tro06b; CH06], `1 convex relaxation [Mal05; Tro06a],

and M-FOCUSS [Cot05]. REduce MMV and BOost (ReMBo) has been shown to outperform conven-

tional methods [ME09], and subspace methods have also been used to solve MMV problems [Lee12;

Ye15]. Statistical approaches [ZS11] often achieve the oracle minimum mean squared error (MMSE).

However, the performance limits of MMV signal estimation in the presence of measurement noise

have not been studied.

Replica analysis is a statistical physics method that can be used to analyze the MMSE and

phase transition for inverse problems [Tan02; GV05; MT06; Krz12a; Krz12b; MM09; BK15; Les15].

Barbier and Krzakala [BK15] studied the MMSE for estimating superposition codes using replica

analysis. In this chapter, we extend the derivation in Barbier and Krzakala [BK15] to two related yet

different MMV settings: (i) J jointly sparse signals are measured by J different dense matrices that

are independent and identically distributed (i.i.d.), and (ii) J jointly sparse signals are measured by

J identical i.i.d. matrices. We only consider dense i.i.d. Gaussian matrices in this work, while our

analysis can be extended to other i.i.d. matrices easily.

We make several contributions in this chapter. First, we obtain the information theoretic MMSE

for the two MMV settings above under the Bayesian setting. Second, we show that in the large

system limit (defined in Definition 1.1) the MMSE’s for these two settings are identical to the single

measurement vector (SMV) problem with a dense measurement matrix and a block sparse signal
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with fixed length blocks. Third, we derive the MMSE for complex SMV problems by noticing that

complex SMV is essentially an MMV problem. Fourth, we identify several performance regions

for MMV, where the MMSE has different characteristics based on the channel noise variance and

measurement rate. Finally, we find a phase transition for belief propagation algorithms (BP) [Don09;

Bar10; BM11; Mon12; Krz12a; Krz12b; BK15] applied to MMV problems, which separates regions

where BP achieves the MMSE asymptotically and where it is sub-optimal. BP simulation results

confirm the phase transition results. Seeing that the mean squared error (MSE) might not be the

only error metric that is of interest, we propose a future direction to extend the work of Tan and

coauthors [Tan14a; Tan14b] to MMV settings, so that we can analyze the performance limits for

arbitrary user-defined additive error metrics, as well as design an algorithmic framework that can

achieve such performance limits.

The remainder of this chapter is organized as follows. We introduce our signal and measurement

models in Section 3.2, followed by replica analysis for two MMV settings as well as two complex

SMV problems in Section 3.3. Section 3.4 proves the results of Section 3.3. Numerical results are

discussed in Section 3.5. Section 3.6 proposes some future directions to study the performance of

arbitrary user-defined additive error metrics for MMV problems and we conclude in Section 3.7.

Some detailed derivations appear in Appendix A.

3.2 Signal and Measurement Models

Signal model: We consider an ensemble of J signal vectors, x( j ) ∈RN , j ∈ {1, · · · , J }, where j is the

index of the signal. As in Section 1.1.1, we consider a super-symbol xl =
�

x (1)l , · · · , x (J )l

�>
, l ∈ {1, · · · , N },

where {·}> denotes the transpose. The super-symbol xl follows a J -dimensional Bernoulli-Gaussian

distribution (defined in (1.4)),

f (xl ) =ρφ(xl ) + (1−ρ)δ(xl ), (3.1)

where ρ is the sparsity rate, φ(xl ) is a J -dimensional Gaussian distribution with zero mean and

identity covariance matrix, and δ(xl ) is the delta function for J -dimensional vectors.

Definition 3.1 (Jointly sparse). Ensembles of signals that obey (3.1) are called jointly sparse.

Measurement models: Each signal x( j ) is measured by an i.i.d. Gaussian measurement ma-

trix A( j ) ∈ RM×N , A
( j )
µl ∼ N (0, 1

N ), where µ refers to the row index and l is the column index. The

measurements y( j ) are corrupted by i.i.d. Gaussian noise z( j ) consisting of entries z
( j )
µ ∼N (0,σ2

Z ),

y( j ) =A( j )x( j )+ z( j ), j ∈ {1, · · · , J }. (3.2)

When the number of signal vectors becomes J = 1, this MMV model (3.2) becomes an SMV problem.

Note that SMV and MMV problems were motivated in (1.1) and (1.3), respectively. Our analysis in
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this chapter is readily extended to other i.i.d. matrices, jointly sparse signals (3.1), and other i.i.d.

noise distributions.

Definition 3.2 (MMV-1). The setting MMV-1 refers to the measurement model in (3.2) with all

matrices A( j ) being different.

Definition 3.3 (MMV-2). The setting MMV-2 refers to the measurement model in (3.2) with all

matrices A( j ) being equal.

In the signal model (3.1) and measurement model (3.2), the sparsity rate ρ, channel noise

varianceσ2
Z , and number of channels J are constant. We are interested in the large system limit,

which has been defined in Definition 1.1 in Section 1.1.1. For readers’ convenience, we restate the

definition of the large system limit as follows.

Definition 3.4 (Large system limit [GW08]). The signal length N scales to infinity, and the number

of measurements M =M (N ) depends on N and also scales to infinity, where the ratio approaches a

positive constant κ,

lim
N→∞

M (N )
N

= κ> 0. (3.3)

We call κ the measurement rate.

3.3 Replica Analysis for MMV Settings

Section 3.2 discussed two MMV settings. Both settings have applications in real-world problems

such as magnetic resonance imaging [Jun07; Jun09] and sensor networks [PK00]. Although numerous

algorithms for MMV signal estimation have been proposed [Tro06b; CH06; Mal05; Tro06a; Cot05;

ME09; ZS11], what is often missing is an information theoretic analysis of the best possible MSE

performance. In this chapter, we only consider the MSE as our performance metric, except for

Section 3.6.

3.3.1 Statistical physics background and replica method

In order to express (3.2) using a single channel, we transform it to an SMV form. One possible way

to do so is illustrated in Figure 3.1. The equivalent SMV problem is

y=Ax+ z, (3.4)

where A ∈RM J×N J is the matrix, y ∈RM J are the measurements, and the noise is z ∈RM J . Entries of

the signal vectors x( j ), measurement vectors y( j ), and noise vectors z( j ) in (3.2) form the SMV signal
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Figure 3.1 Illustration of MMV channel (3.2) with J = 3 signal vectors (left), and one of its possible SMV forms
(right). Different background patterns differentiate entries from different channels, and blank space denotes
zeros.

x, measurements y, and noise z (3.4) with

x(l−1)J+ j = x
( j )
l , y( j−1)M+µ = y ( j )

µ
, and z( j−1)M+µ = z ( j )µ ,

respectively. Entries of the matrix A( j ) (3.2) form the SMV matrix A (3.4) with A( j−1)M+µ,(l−1)J+ j = A
( j )
µl ;

other entries of A are zeros. The posterior for the estimate bx ∈RN J , comprised of super-symbols

bxl =
�

bx(l−1)J+1, · · · , bxl J

�>
, l ∈ {1, · · · , N }, is

f (bx|y) =
1

Z

N
∏

l=1

f (bxl )
M J
∏

µ=1





e
− 1

2σ2
Z

�

yµ−
∑N

l=1 Aµl bxl

�2

q

2πσ2
Z



 , (3.5)

where Aµl = [Aµ,(l−1)J+1, · · · , Aµ,l J ] is a super-symbol highlighted by the dashed area in Figure 3.1,

and the denominator Z is the partition function [Tan02; GV05; Krz12a; Krz12b; MM09; BK15],

Z =

∫

N
∏

l=1

f (bxl )
M J
∏

µ=1





e
− 1

2σ2
Z

�

yµ−
∑N

l=1 Aµl bxl

�2

q

2πσ2
Z





N
∏

l=1

dbxl . (3.6)

Note that multi-dimensional integrations such as (3.6) are denoted by a single
∫

operator for

brevity. Confining our attention to the Bayesian setting [Krz12a; Krz12b; BK15], f (bxl ) follows the

true distribution (3.1), f (bxl ) =ρφ(bxl ) + (1−ρ)δ(bxl ).

By creating an analogy between the channel (3.4) and a many-body thermodynamic system [Tan02;

GV05; Krz12a; Krz12b; MM09; BK15], the posterior (3.5) can be interpreted as the Boltzmann measure

on a disordered system with the following Hamiltonian,

H (bx) =
N
∑

l=1

log[ f (bxl )]+
M J
∑

µ=1

1

2σ2
Z

�

yµ−
N
∑

l=1

Aµlbxl

�2

. (3.7)

The averaged free energy of the disordered system given by (3.7) characterizes the thermo-

dynamic properties of the system. Evaluating the fixed points (local maxima) in the free energy
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expression provides the MMSE for the channel (3.4) [Tan02; GV05; Krz12a; Krz12b; MM09; BK15].

Under the assumption of self-averaging [Tan02; GV05; Krz12a; Krz12b; MM09; BK15], the free energy

is defined as1

F = lim
N→∞

1

N
EA,x,z[log(Z )], (3.8)

which is difficult to evaluate. Note that EA,x,z[·] denotes expectation with respect to (w.r.t.) A, x,

and z. The replica method [Tan02; GV05; Krz12a; Krz12b; MM09; BK15] introduces n replicas of

the estimate bx as bxa , a ∈ {1, · · · , n}, and the free energy (3.8) can be approximated by the replica

trick [Krz12a; Krz12b; MM09; BK15],

F = lim
N→∞

lim
n→0

EA,x,z[Z n ]−1

N n
. (3.9)

Note that the self-averaging property that leads to (3.8) and the replica trick (3.9), as well as the

replica symmetry assumptions that appear in latter parts of this chapter, are assumed to be valid in

this work, and their rigorous justification is still an open problem in mathematical physics [Tan02;

GV05; Krz12a; Krz12b; MM09; BK15].2

Evaluating the free energy: To evaluate the free energy (3.9), we calculate EA,x,z [Z n ] as follows,

EA,x,z

�

Z n
�

= (2πσ2
Z )
− nM J

2 ×Ex





∫ N
∏

l=1

n
∏

a=1

f (bxa
l )

M
∏

µ=1

Xµ
N
∏

l=1

n
∏

a=1

dbxa
l



 , (3.10)

where Z is given in (3.6),

Xµ =EA,z

�

e
− 1

2σ2
Z

∑J
j=1

∑n
a=1(v

a
µ j )

2
�

, (3.11)

a is the replica index, bxa
l is the l -th super-symbol of bxa , and

v a
µ j =

N
∑

l=1

Aµ+M ( j−1),l (xl −bxa
l ) + zµ+M ( j−1). (3.12)

Lemma 3.1. In the large system limit, the quantityXµ (3.11) is the same for both MMV-1 and MMV-2.

Lemma 3.1 is proved in Section 3.4. Because of Lemma 3.1, the free energy expressions for

MMV-1 and MMV-2 should be identical in the large system limit. We state the result as a theorem

and the detailed derivations appear in Appendix A.

1Part of the literature [Tan02; GV05], including (2.7) in this dissertation, defines the free energy as the negative of (3.8),
so that fixed points of the free energy correspond to local minima.

2Recently, the replica Gibbs free energy has been proven rigorously for the SMV case by Barbier et al. [Bar16] and
Reeves and Pfister [RP16]. We conjecture that by generalizing these two works [Bar16; RP16], our MMV analysis can be
made rigorous; we leave it for future work.
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Theorem 3.1 (Free energy for MMV). For settings MMV-1 and MMV-2, the free energy expressions as

functions of E are identical in the large system limit and are given below,

F (E ) = −
J

2
κ

�

log[2π(σ2
Z +E )] +

ρ+σ2
Z

E +σ2
Z

�

+

∫

f (x1)

∫

log

�∫

f (bx1)e
−
ÒQ+bq

2 bx>1 bx1+Òmbx>1 x1+
p
bq h>bx1 dbx1

�

Dh d x1 (3.13)

= −
J

2
κ

�

log[2π(σ2
Z +E )] +

σ2
Z

E +σ2
Z

�

+
J R (1−ρ)

2(κ+E +σ2
Z )
+

ρ

∫

log

�

ρ

�

E +σ2
Z

κ+E +σ2
Z

�J /2

+ (1−ρ)e
− κ

2(E+σ2
Z )

g>g
�

Dg+

(1−ρ)
∫

log

�

ρ

�

E +σ2
Z

κ+E +σ2
Z

�J /2

+ (1−ρ)e
− κ

2(κ+E+σ2
Z )

h>h
�

Dh, (3.14)

where h, x1, and g are J -dimensional super-symbols, and the differentialDh=
∏J

j=1
1p
2π

e−h 2
j /2 d h j ;

the same rule applies toDg.3

MMSE: The E that maximizes the free energy (3.14) corresponds to the MMSE [Krz12a; Krz12b;

BK15]. After finding the E0 that maximizes the free energy (3.14), we obtain the MMSE, D0 = E0, in

the large system limit.

Corollary 3.2. The MMSE for MMV-1 and MMV-2 is the same for the same measurement rate κ, noise

varianceσ2
Z , and number of signal vectors J .

Remark 3.1. As the reader can see from the proof of Lemma 3.1 in Section 3.4, the key reason that

both MMV-1 and MMV-2 have an identical MMSE is that the entries in the super-symbols xl and

bx{·}l are i.i.d. That said, we suspect that the MMSE for MMV-1 and MMV-2 could differ by some

higher order terms. If the entries of these super-symbols are not i.i.d., which is true in some practical

MMV applications [ZS13], then it becomes more difficult to analyze the covariance matrix Gµ as in

Section 3.4. Therefore, we do not have an analysis for non-i.i.d. entries within xl and bx{·}l . However, we

speculate that MMV-1 might have lower MMSE than MMV-2 in that case.

Link to SMV with block sparse signal: The signal x in (3.4) is a block sparse signal comprised of

N blocks of length J . We study an SMV problem by replacing the measurement matrix A in (3.4)

with an i.i.d. Gaussian matrix bA ∈RM J×N J , i.e., y= bAx+ z. The entries of bA follow the distribution,
bAµl ∼ N (0, 1

N J ). This SMV is similar to the setting in Barbier and Krzakala [BK15], except for the

different priors and different `2 norms in each row of bA. We consider these differences while following

3The J -dimensional integrals in (3.14) can be simplified to one-dimensional integrals using a change of coordinates
to J -sphere coordinates. Note also that E approaches the MSE in the large system limit; details appear in Appendix A.
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their derivation [BK15], and obtain the same free energy expression as (3.14). We have also shown

that MMV-1 and MMV-2 have the same MMSE in the large system limit. Hence, the three settings

have the same free energy expression and their MMSE’s are the same under the same noise variance

σ2
Z and measurement rate κ in the large system limit.

3.3.2 Extension to complex SMV

The MMV model with jointly sparse signals is a versatile model that can be adapted to other problems.

As an example, we show how the MMV model can be used to analyze the MMSE of a complex SMV.

Consider the complex SMV, yC = AC xC + zC , where xC = xR + i xI ∈CN , AC = AR + i AI ∈CM×N ,

zC = zR+i zI ∈CM , yC = yR+i yI ∈CM , i =
p
−1, andR andI refer to the real and imaginary parts,

respectively. The real and imaginary parts of the entries of zC both follow a Gaussian distribution,

zRl , zIl ∼N (0,σ2
Z ), l ∈ {1, · · · , M }. Assume that the complex signal xC is comprised of two jointly

sparse signals, xR and xI , that satisfy the J = 2 dimensional Bernoulli-Gaussian distribution (3.1).

We can extend the analysis of Section 3.3.1 to two settings of complex SMV: (i) the measurement

matrix AC is real and (ii) AC is complex.4

Real measurement matrix: Suppose that AC is real, AC = AR ∈ RM×N , and the entries of AR

follow a Gaussian distribution, ARµl ∼N (0, 1
N ). Complex SMV with a real measurement matrix can

be written as real-valued MMV,

yR =ARxR + zR and yI =ARxI + zI , (3.15)

where xR and xI are jointly sparse and follow (3.1). This formulation (3.15) fits into MMV-2 for J = 2.

Hence, we can obtain the MMSE according to (3.14).5

Complex measurement matrix: Consider a complex AC = AR + i AI ∈ CM×N with entries

ARµl , AIµl ∼N (0, 1
2N ). Expanding out the complex channel, yC =AC xC +zC , we obtain the equivalent

real-valued SMV channel,
�

yR

yI

�

=

�

AR −AI

AI AR

��

xR

xI

�

+

�

zR

zI

�

. (3.16)

4A replica analysis for complex SMV with a real measurement matrix appears in Guo and Verdú [GV05]. Their derivation
does not cover complex matrices.

5As a reminder, the free energy of MMV-2 is identical to that of MMV-1 in the large system limit.
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We rearrange (3.16) as follows,

�

yR

yI

�

︸︷︷︸

y

=

�

AR:,1,−AI:,1, · · · , AR:,N ,−AI:,N
AI:,1, AR:,1, · · · , AI:,N , AR:,N

�

︸ ︷︷ ︸

A

















xR1
xI1

...

xRN
xIN

















︸ ︷︷ ︸

x

+

�

zR

zI

�

︸︷︷︸

z

, (3.17)

where {:} refers to all the rows. In the rearranged channel (3.17), the measurement matrix A consists

of super-symbols,

Aµl =

¨

[ARµl ,−AIµl ], µ ∈ {1, · · · , M }
[AIµl , ARµl ], µ ∈ {M +1, · · · , 2M }

, (3.18)

and the signal x consists of xl =

�

xRl
xIl

�

, l ∈ {1, · · · , N }. The measurements and noise are y=

�

yR

yI

�

and

z=

�

zR

zI

�

, respectively. Hence, y µ =
∑N

l=1 Aµl xl + zµ, µ ∈ {1, · · · , 2M }.

Section 3.4 shows that the free energy and MMSE for complex SMV with complex measurement

matrices are the same as MMV-1 with J = 2. Note that in the free energy expression (3.14), the MSE,

D = E (A.8), is the average MSE of the J entries of xl . Therefore, in this complex SMV setting, D is

the average MSE of the real and imaginary parts of the signal entries.

3.4 Proof of Lemma 3.1

In this section, we show that the quantity Xµ (3.11) is the same for MMV-1 and MMV-2. Moreover,

we show that complex SMV with a complex measurement matrix also yields the same Xµ with J = 2.

First, we rewrite (3.11) in the vector form

Xµ=Evµ

�

e
− 1

2σ2
Z

∑J
j=1

∑n
a=1(v

a
µ j )

2
�

=Evµ

�

e
− 1

2σ2
Z

v>µvµ
�

, (3.19)

where vµ = [v 1
µ1, · · · , v a

µ1, · · · , v 1
µJ , · · · , v n

µJ ]
> and v a

µ j is given in (3.12). In order to calculate the expec-

tation w.r.t. vµ in (3.19), we calculate the distribution of vµ, which is approximated by a Gaussian

distribution, due to the central limit theorem. The mean is EA,z[v a
µ j ] = 0.

We now calculate the covariance matrix, Gµ = E[vµv>µ]. The matrix Gµ is separated into J × J

blocks of size n × n , as shown in Figure 3.2. The main diagonal of Gµ consists of entries w1 =

EA,z[(v a
µ j )

2]. The entries in the blocks along the main diagonal (other than entries along the main diag-

onal itself) are w3 =EA,z[v a
µ j v b

µ j ]. The main diagonals of other blocks have entries w2 =EA,z[v a
µ j v a

µη],
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Figure 3.2 Covariance matrix Gµ ∈ Rn J×n J . Each block in Gµ has a size of n ×n . The entries in the heavily
marked blocks take the value w3, except that entries along the dashed diagonal are w1. The entries in the
lightly marked blocks take the value w4, except that entries along the dotted diagonals are w2.

and other entries in these blocks are w4 = EA,z[v a
µ j v b

µη]. We now calculate each of these values as

follows for MMV-1, MMV-2, and complex SMV with a complex measurement matrix.

MMV-1: We begin by calculating the diagonal entries of the covariance matrix Gµ =E[vµv>µ],

w1 =EA,z

�

(v a
µ j )

2
�

=
N ,N
∑

l ,k=1

�

(xl −bxa
l )
>EA

�

A>µ+M ( j−1),l Aµ+M ( j−1),k

�

(xk −bxa
k )

�

+σ2
Z . (3.20)

In (3.20), EA

�

A>µ+M ( j−1),l Aµ+M ( j−1),k

�

= δk ,l
N
eIJ (cf. Figure 3.1), whereeIJ is a J × J matrix with only one

1 located at the j -th row, j -th column, and δk ,l = 1 when k = l , else zero. Hence, (3.20) becomes

w1 = EA,z

�

(v a
µ j )

2
�

=
1

N

N
∑

l=1

(xl , j − bx a
l , j )

2+σ2
Z (3.21)

=
1

N J

N
∑

l=1

(xl −bxa
l )
>(xl −bxa

l ) +σ
2
Z , (3.22)

where xl , j and bx a
l , j (3.21) denote the j -th entries in super-symbols xl and bxa

l , respectively, and (3.22)

holds because all J entries within the same super-symbol (xl or bxa
l ) are i.i.d.

Similarly, we obtain

w2 =EA,z[v
a
µ j v a

µη] =
1

N

N
∑

l=1

(xl , j − bx a
l , j )(xl ,η− bx a

l ,η)

=
1

N J

N
∑

l=1

(xl −bxa
l )
>(xa

l −bx
b
l ),

(3.23)

where entries of x{·}l and bx{·}l follow the same distribution as entries of xl given l , and (3.23) is due

to (i) entries of xl being i.i.d., (ii) entries of bx{·}l being i.i.d. for fixed l , and (iii) the replica symmetry
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assumption [Krz12a; Krz12b]. We also obtain

w3 =EA,z[v
a
µ j v b

µ j ] =
1

N J

N
∑

l=1

(xl −bxa
l )
>(xl −bxb

l ) +σ
2
Z ,

w4 =EA,z[v
a
µ j v b

µη] =
1

N J

N
∑

l=1

(xl −bxa
l )
>(xa

l −bx
b
l ).

(3.24)

We now define the following auxiliary parameters

ma =

N
∑

l=1

(bxa
l )
>xl

N J
, Qa =

N
∑

l=1

(bxa
l )
>
bxa

l

N J
, qa b =

N
∑

l=1

(bxa
l )
>
bxb

l

N J
, q0 =

1

N J

N
∑

l=1

(xa
l )
>xl , (3.25)

which allow us to express (3.22)–(3.24) as

w1 =ρ−2ma +Qa +σ
2
Z ,

w2 = q0− (ma +mb ) +qa b , (3.26)

w3 =ρ− (ma +mb ) +qa b +σ
2
Z ,

w4 = q0− (ma +mb ) +qa b . (3.27)

Up to this point, we have obtained the entries of Gµ. Plugging the distribution of vµ, approximated

by f (vµ) = [(2π)n det(Gµ)]−
1
2 exp(− 1

2 v>µG−1
µ vµ), into (3.19), we obtain

Xµ =
�

det

�

In +
1

σ2
Z

Gµ

��−1/2

, (3.28)

where In denotes an identity matrix of size n ×n and det(·) is the determinant of a matrix.

MMV-2: For the matrix A (3.4) in MMV-2, rows j M + 1, · · · , ( j + 1)M , 2 ≤ j ≤ J , will be the

right-shift of rows ( j −1)M +1, · · · , j M . We express v a
µ j (3.12) as

v a
µ j =

N
∑

l=1

Aµl T j (xl −bxa
l ) + zµ+M ( j−1), µ ∈ {1, · · · , M }, (3.29)

where T j is a J × J transform matrix with the j -th entry of the first row being one and all other entries

in T j being zeros. Using the same derivations as in MMV-1, it can be proved that the covariance

matrix Gµ =E[vµv>µ] in MMV-2 is identical to that of MMV-1. Therefore, Xµ in MMV-1 and MMV-2

are identical in the large system limit.

Complex SMV with complex measurement matrix: The derivations are the same as in MMV-2
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above, except that we need to change Aµl in (3.29) to Aµl (3.18) and replace T j by

T=

�

0 1

−1 0

�

,

because A(µ+M )l =Aµl T, µ ∈ {1, · · · , M }. Using similar steps as above, we obtain that the covariance

matrix Gµ in this case is also the same as that of MMV-1 with J = 2.

SolvingXµ: For such a structured matrix Gµ (Figure 3.2), elementary transforms show that the

eigenvalues (EV’s) are comprised of one EV equal toα1 = [w1+(J −1)w2]+(n−1)[w3+(J −1)w4], (J −1)

EV’s equal toα2 = (w1−w2)+(n−1)(w3−w4), (n−1)EV’s equal toα3 = [w1+(J −1)w2]−[w3+(J −1)w4],

and (J −1)(n −1) EV’s equal to α4 = (w1−w2)− (w3−w4).

Owing to replica symmetry [Krz12a; Krz12b], we have ma = mb = m , Qa = Q , and qa b = q ,

cf. (3.25). Also, in the Bayesian setting, we have m = q0 = q and Q = ρ. Thus, w2 = w4 = 0 ((3.26)

and (3.27)), and

det

�

In J +
1

σ2
Z

Gµ

�

=

�

1+
α1

σ2
Z

��

1+
α2

σ2
Z

�J−1�

1+
α1

σ2
Z

�n−1�

1+
α1

σ2
Z

�(n−1)(J−1)

=

�

1+n
w3

σ2
Z +α4

�J �

1+
1

σ2
Z

α4

�J n

.

(3.30)

Considering (3.30), we simplify (3.28),

lim
n→0
Xµ = e

− n J
2

�

ρ−2m+σ2
Z +q

Q−q+σ2
Z
+log(Q−q+σ2

Z )−log(σ2
Z )
�

, (3.31)

where we rely on the following Taylor series,

enk ≈ 1+nk ⇒ e−
n
2 k ≈ (1+nk )−1/2, n→ 0.

3.5 Numerical Results

Given a free energy expression for an MMV problem, the MMSE can be obtained by evaluating the

largest free energy [Tan02; GV05; Krz12a; Krz12b; MM09; BK15]. Having derived the free energy for

the two MMV settings in Section 3.3, this section calculates the MMSE under various cases. Different

performance regions of MMV are identified, where the MMSE behaves differently as a function of

the noise varianceσ2
Z and measurement rate κ. We identify a phase transition of belief propagation

(BP) that separates regions where BP is optimal asymptotically or not. Simulation results match the

performance predicted for BP.
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Figure 3.3 Free energy as a function of the MSE for different measurement rates κ (number of jointly sparse
signal vectors J = 3 and noise varianceσ2

Z =−35 dB). The black circles mark the largest free energy, and so
they correspond to the MMSE.

3.5.1 Performance regions: Definitions and numerical results

When calculating the MMSE (A.8) for different settings from the free energy expression (3.14), four

different performance regions will appear, as discussed below; the free energy as a function of the

MSE is shown in Figure 3.3 for different performance regions.

Regions 1 and 4: The free energy (3.14) has one local maximum point w.r.t. the MSE D (A.8).

This D leads to the globally maximum free energy and is the MMSE.

Regions 2 and 3: There are 2 local maxima in the free energy, D1 and D2, where D1 < D2. In

Region 2, the smaller MSE, D1, leads to the larger local maximum free energy (3.14) (hence,F (D1) is

the global maximum), and is the MMSE. In Region 3, the larger MSE, D2, is the MMSE.

Boundaries between regions: We denote the boundary separating regions 1 and 2 by the BP

threshold κB P (σ2
Z ), the boundary separating regions 2 and 3 by the low noise threshold κl (σ2

Z ), and

the boundary separating regions 3 and 4 by the critical threshold κc (σ2
Z ).

Numerical results: Consider J -dimensional Bernoulli-Gaussian signals (3.1) with sparsity rate

ρ = 0.1. Evaluating the free energy (3.14) with the noise variance σ2
Z from -20 dB to -50 dB and

measurement rate κ from 0.11 to 0.24, we obtain the MMSE as a function ofσ2
Z and κ for J = 1,3,

and 5, as shown in Figure 3.4.6 The darkness of the shades represents the natural logarithm of the

MMSE, ln(MMSE). In all panels, the critical threshold κc (σ2
Z ), low noise threshold κl (σ2

Z ), and BP

threshold κB P (σ2
Z ), as well as Regions 1-4, are marked.

In Regions 3 and 4, the best-possible algorithm yields a large MMSE for all noise variances. In

6The MMV with J = 1 becomes an SMV. The MMSE results in Figure 3.4a match with the SMV MMSE in Krzakala et.
al. [Krz12a; Krz12b] and Zhu and Baron [ZB13].
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Figure 3.4 Performance regions for MMV with different J . The darkness of the shades corresponds to ln(MMSE)
for a certain noise varianceσ2

Z and measurement rate κ. There are 4 regions, Regions 1 to 4, where the MMSE
as a function of the noise varianceσ2

Z and measurement rateκbehaves differently. Regions 1 to 4 are separated
by 3 thresholds, κc (σ2

Z ) (the dashed curves), κl (σ2
Z ) (the solid curves), and κB P (σ2

Z ) (the curves comprised of
little white circles); note that Section 3.5.1 discusses how to obtain these thresholds. (a) MMV with J = 1, (b)
MMV with J = 3, and (c) MMV with J = 5.

contrast, in Regions 1 and 2, the optimal algorithm yields an MMSE that decreases with the noise

varianceσ2
Z . To summarize, the optimal algorithm yields poor estimation performance below the

low noise threshold κl (σ2
Z ), and good performance above κl (σ2

Z ).

We further examine the MMSE as a function of the number of jointly sparse signal vectors J

and the measurement rate κ. We plot the MMSE in dB scale in Figure 3.5. The noise variance is

-35 dB. We can see that the MMSE decreases with more signal vectors J and greater measurement

rate κ. However, the MMSE depends less on J as J is increased. Note that the discontinuity in the

MMSE surface in Figure 3.5 is a result of the different performance regions that the various settings

(different J and κ) lie in.

3.5.2 BP phase transition

Belief propagation (BP) [Don09; Bar10; Mon12; BM11; Krz12a; Krz12b; BK15] is an algorithmic

framework invented independently by researchers in coding theory, statistical physics, and artificial

intelligence, which can often achieve the optimal estimation performance (MMSE) for linear inverse

problems. The canonical BP updating rules appeared in (2.11). When there are multiple local maxima

D1 <D2 in the free energy (3.14), BP converges to the local maximum with the larger MSE, D2 [Don09;

Mon12; BM11; Krz12a; Krz12b]. Hence, D2 characterizes the MSE predicted for BP. Moving from

Region 1 to Region 2 by decreasing the measurement rateκwith fixed noise varianceσ2
Z , the number

of local maxima increases from 1 to 2. Therefore, BP estimation performance experiences a sudden

deterioration (increase in MSE) when the measurement rate κ drops such that the combination of

the noise varianceσ2
Z and measurement rate κmoves from Region 1 to Region 2. The BP threshold,
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Figure 3.5 MMSE in dB as a function of the number of jointly sparse signal vectors J and the measurement
rate κ (noise varianceσ2

Z =−35 dB).

κB P (σ2
Z ), is the boundary between Regions 1 and 2, and is where the BP phase transition happens.

That is, BP achieves poor estimation performance below κB P (σ2
Z ), and good performance above

κB P (σ2
Z ).

Remark 3.2. In Figure 3.4, we see that increasing J reduces the BP threshold κB P (σ2
Z ). Since BP

achieves the MMSE when κ>κB P (σ2
Z ), increasing J is beneficial to applications that use BP as the

estimation algorithm.

Remark 3.3. We further numerically analyzed the low noise (σ2
Z → 0) and zero noise (σ2

Z = 0) cases.

The low noise threshold κl (σ2
Z ) converges to ρ as the noise varianceσ2

Z is decreased for J = 1, 3, and

5. We believe that this numerical result holds for every J . Moreover, this result matches the theoretical

robust threshold of Wu and Verdú [WV12b] for J = 1 in the low noise limit. Our numerical results also

show that the BP threshold κB P (σ2
Z ) converges to some value for different J as σ2

Z → 0. Analyzing

these observations rigorously is left for future work.

3.5.3 BP simulation

After obtaining the theoretic MMSE for MMV, as well as the MSE predicted for BP, we run some simu-

lations to estimate the x( j ) of channel (3.2) in a Bayesian setting. The algorithm we use is approximate

message passing (AMP) [Don09; Mon12; BM11; Krz12a; Krz12b; BK15], which is an approximation

to the BP algorithm; related algorithms have been proposed by Ziniel and Schniter [ZS13] and Kim et

al. [Kim11]. In the SMV case, when the measurement matrix and the signal have i.i.d. entries, AMP has

the state evolution (SE) formalism [Don11; BM11; JM12; Don13; Bay15] that tracks the evolution of

the MSE at each iteration. Recently, Javanmard and Montanari proved that SE tracks AMP rigorously
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Algorithm 3.1 AMP for MMV

1: Inputs: Maximum number of iterations T , threshold ε, sparsity rate ρ, noise variance σ2
Z ,

measurements y( j ), and measurement matrices A( j ),∀ j

2: Initialize: t = 1,δ=∞, w( j ) = y( j ),Θ j = 0, v
( j )
l =ρσ2

Z , a
( j )
l = 0,∀l , j

3: while t < T and δ > ε do
4: for j ← 1 to J do

5: q( j ) = y( j )−w( j )

σ2
Z+Θ j

6: Θ j =
1
N

∑N
l=1 v

( j )
l

7: w j =A( j )a( j )−Θ j q( j )

8: Σ j =
N (σ2

Z+Θ j )
M . Scalar channel noise variance

9: R( j ) = a( j )+Σ j

�

A( j )
�> y( j )−w( j )

σ2
Z+Θ j

. Pseudodata

10: ba( j ) = a( j ) . Save current estimate
11: end for
12: for l ← 1 to N do
13:

¦

v
( j )
l

©J

j=1
= fvl

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

. Variance

14:
¦

a
( j )
l

©J

j=1
= fal

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

. Estimate

15: end for
16: t = t +1 . Increment iteration index.

17: δ= 1
N J

∑N
l=1

∑J
j=1

�

ba
( j )
l −a

( j )
l

�2
. Change in estimate

18: end while
19: Outputs: Estimate a( j ),∀ j

in an SMV setting with a spatially coupled measurement matrix [JM12]. According to our transform in

Figure 3.1, we can see that the proof [JM12] could be extended to the MMV setting. Note that SE allows

to compute the highest equilibrium of Gibbs free energy [Don11; BM11; JM12; Don13; Bay15], which

corresponds to the local optimum D2 in Section 3.5.2. Hence, AMP often achieves the same MSE as

BP and we use AMP simulation results to demonstrate that the MMSE can often be achieved.7 Consid-

ering (3.2), we simplify the AMP algorithm in Barbier and Krzakala [BK15] to obtain Algorithm 3.1,8

where {Σ j }J
j=1,

¦

R
( j )
l

©J

j=1
,
¦

a
( j )
l

©J

j=1
and

¦

v
( j )
l

©J

j=1
refer to sets of all intermediate variables Σ j , pseu-

dodata R
( j )
l , estimates a

( j )
l , and variances v

( j )
l , j ∈ {1, · · · , J }, l ∈ {1, · · · , N }, respectively. The current

iteration t , change in the estimate δ, and intermediate variables Θ j , j ∈ {1, · · · , J }, are scalars. The

intermediate variables q( j ) and w( j ) are vectors of length M . The functions fal

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

7When the assumptions about the measurement matrix and signal [Don09; Mon12; BM11; Krz12a; Krz12b; BK15] are
violated, AMP might suffer from divergence issues.

8Note that Algorithm 3.1 is a straightforward simplification of the AMP algorithm by Barbier and Krzakala [BK15].
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Figure 3.6 AMP simulation results (MSEAMP) compared to the MSE predicted for BP (MSEBP) with J = 3 jointly
sparse signal vectors. The dashed curve, solid curve, and the curve comprised of little circles correspond
to thresholds κc (σ2

Z ), κl (σ2
Z ), and κB P (σ2

Z ), respectively. Regions 1-4 are also marked. The darkness of the

shades denotes ln
�MSEAMP

MSEBP

�

, which we expect to be zero (completely dark shades) in the entire κ versus σ2
Z

plane. The narrow bright band above the BP threshold indicates the mismatch between the MSE from the
simulation and the MSE predicted for BP.

and fvl

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

are given by

fal

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

=
ρ 1
Σ j+1

¦

R
( j )
l

©J

j=1

ρ+ (1−ρ)
∏J

j=1

�

Ç

1+ 1
Σ j

exp

�

−
�

R
( j )
l

�2

2Σ j (Σ j+1)

�� ,

fvl

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�

=−
h

fal

�

{Σ j }J
j=1,

¦

R
( j )
l

©J

j=1

�i2
+

ρ 1
Σ j+1

�

�
¦

R
( j )
l

©J

j=1

�2
1

Σ j+1+Σ j

�

ρ+ (1−ρ)
∏J

j=1

�

Ç

1+ 1
Σ j

exp

�

−
�

R
( j )
l

�2

2Σ j (Σ j+1)

�� ,

for J -dimensional Bernoulli-Gaussian signals (3.1).

We simulated the signals in (3.1) with J = 3 signal vectors and sparsity rateρ = 0.1 measured by a

channel (3.2) with measurement rate κ ∈ [0.11, 0.24] and noise varianceσ2
Z ∈ [−20,−50] dB. For each

setting, we generated 50 signals of length N = 5000, and the resulting MSE compared to the MSE

predicted for BP is shown in Figure 3.6.9 The labels of the thresholds are omitted for brevity. We can

see that AMP simulation results match with the MSE predicted for BP and BP phase transition from

the replica analysis of Section 3.5.2. Note that there is a narrow band of light shades above the BP

9We simulated both J different measurement matrices A( j ) and J identical A( j ). Both results match the MSE predicted
for BP, which support our conclusion that the MMSE’s of both settings are the same. Figure 3.6 is with J different A( j ).
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threshold, κB P (σ2
Z ) (the top threshold), meaning that the MSE from the simulation is greater than

the MSE predicted for BP; this is due to randomness in our generated signals and channels. Note

that we also compared the AMP simulation results to that of the M-SBL algorithm [Ye15], a widely

used algorithm to solve the MMV problem. The M-SBL results were not as good. Indeed, because

AMP is often an approach that achieves the MMSE, other algorithms are expected to provide greater

MSE.

3.6 Extension to Arbitrary Error Metrics

In this chapter, we have obtained the MMSE for MMV problems. As mentioned in Section 3.1, there

are many estimation approaches for MMV problems [Tro06b; CH06; Mal05; Tro06a; Cot05; ME09;

Lee12; Ye15; ZS11]. However, when running estimation algorithms for MMV problems, people

might be interested in obtaining an estimate whose “user-defined” error is as small as possible.

For example, if estimating the underlying signal is important, people may use the MSE metric;

when there might be outliers in the estimate, using the mean absolute error metric might be more

appropriate. For applications such as compressive diffuse optical tomography [Lee11], estimating

the support set of the jointly sparse underlying signals is of more interest. Seeing that there are

different algorithms minimizing different error metrics, but there is no prior work discussing the

optimal performance with user-defined (arbitrary) error metrics in MMV, it is of interest to study the

optimal performance with user-defined error metrics in MMV problems and also design algorithms

to achieve such optimal performance.

Tan and coauthors [Tan14a; Tan14b] studied the optimal performance for arbitrary additive

error metrics for an SMV problem (1.1) by taking advantage of the properties of BP [Don09; Bar10;

BM11; Mon12; Krz12a; Krz12b; BK15]: BP yields an equivalent scalar channel

ey= x+ez, (3.32)

whose posterior f (x|ey)approaches the true posterior distribution f (x|y)under certain conditions [Ran11].

Using f (x|ey), Tan and coauthors designed the denoiser that minimizes the (additive) user-defined

error metrics for (3.32).

According to Section 3.2 and Figure 3.1, we can transform the MMV problem (3.2) into an SMV

problem (3.4). Hence, we can extend the work of Tan and coauthors [Tan14a; Tan14b] to study the

optimal performance for arbitrary additive error metrics, as well as to build algorithms that achieve

the optimal performance for MMV (3.2). The details are left for future work.
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3.7 Conclusion

We analyzed the minimum mean squared error (MMSE) for two settings of multi-measurement

vector (MMV) problems, where the entries in the signal vectors are independent and identically

distributed (i.i.d.), and share the same support. One MMV setting has i.i.d. Gaussian measurement

matrices, while the other MMV setting has identical i.i.d. Gaussian measurement matrices. Replica

analysis yields identical free energy expressions for these two settings in the large system limit when

the signal length goes to infinity and the number of measurements scales with the signal length.

Because of the identical free energy expressions, the MMSE’s for both MMV settings are identical.

By numerically evaluating the free energy expression, we identified different performance regions

for MMV where the MMSE as a function of the channel noise variance and the measurement rate

behaves differently. We also identified a phase transition for belief propagation algorithms (BP)

that separates regions where BP achieves the MMSE asymptotically and where it is sub-optimal.

Simulation results of an approximated version of BP matched with the mean squared error (MSE)

predicted by replica analysis. As a special case of MMV, we extended our replica analysis to complex

single measurement vector (SMV) problems, so that we can calculate the MMSE for complex SMV

with real or complex measurement matrices. Seeing that the MSE might not be the only error

metric that is of interest, we proposed to extend the work of Tan and coauthors [Tan14a; Tan14b] to

MMV problems, so that we can optimize over different user-defined additive error metrics in MMV

applications.
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CHAPTER

4

PERFORMANCE TRADE-OFFS IN

MULTI-PROCESSOR APPROXIMATE

MESSAGE PASSING

In Chapter 3, we focused on analyzing the information theoretic performance limits for multi-

measurement vector problems (1.3). Our analysis is readily extended to single measurement vector

problems (1.1). In practice, many algorithms run in distributed networks, especially as we are

entering the “big data” era. Running estimation algorithms across distributed networks can incur

different costs besides the quality of the estimation. Some prior art has focused on reducing certain

costs such as the communication cost [Han14] and the computation cost [Ma14c], but there has

been less progress relating different costs and achieving optimal trade-offs among them. Despite the

lack of such works, these trade-offs are important to system designers in order to produce efficient

systems. Studying the relation between different costs is a broad problem with a rich design space.

Therefore, in this chapter, we focus our discussion on one specific distributed algorithm as an

example: the “multi-processor approximate message passing” algorithm (MP-AMP) [Han14; Han16],

and study the optimal trade-offs among different costs. In each MP-AMP iteration, nodes of the

multi-processor system and its fusion center exchange lossily compressed messages pertaining to

their estimates of the input. In this setup, we derive the optimal per-iteration coding rates using

dynamic programming. We analyze the excess mean squared error (EMSE) beyond the minimum
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mean squared error, and prove that, in the limit of low EMSE, the optimal coding rates increase

approximately linearly per iteration. Additionally, we obtain that the combined cost of computation

and communication scales with the desired estimation quality according to O (log2(1/EMSE)). Finally,

we study trade-offs between the physical costs of the estimation process including computation

time, communication loads, and the estimation quality as a multi-objective optimization problem,

and characterize the properties of the Pareto optimal surfaces. This chapter is based on our work

with Han et al. [Han16] and with Baron and Beirami [Zhu16c; Zhu16a].

4.1 Related Work and Contributions

4.1.1 Related work

Many scientific and engineering problems [Don06a; Can06] can be approximated using a linear

model,

y=Ax+ z, (4.1)

where x ∈ RN is the unknown input signal, A ∈ RM×N is the matrix that characterizes the linear

model, and z ∈RM is measurement noise. The goal is to estimate x from the noisy measurements y

given A and statistical information about z; this is a linear inverse problem. Alternately, one could

view the estimation of x as fitting or learning a linear model for the data comprised of y and A.

When M �N , the setup (4.1) is known as compressed sensing (CS) [Don06a; Can06]; by posing

a sparsity or compressibility requirement on the signal, it is indeed possible to accurately recover x

from the ill-posed linear model [Don06a; Can06] when the number of measurements M is large

enough, and the noise level is modest. However, we might need M >N when the signal is dense or

the noise is substantial. Hence, we do not constrain ourselves to the case of M �N .

Approximate message passing (AMP) [Don09; Mon12; BM11; RV16] is an iterative framework that

solves linear inverse problems by successively decoupling [Tan02; GV05; GW08] the problem in (4.1)

into scalar denoising problems with additive white Gaussian noise (AWGN). AMP has received con-

siderable attention, because of its fast convergence and the state evolution (SE) formalism [Don09;

BM11; RV16], which offers a precise characterization of the AWGN denoising problem in each itera-

tion. In the Bayesian setting, AMP often achieves the minimum mean squared error (MMSE) [Guo09;

Ran12; ZB13; Krz12a] in the limit of large linear systems (N →∞, M
N → κ, cf. Definition 1.1).

In real-world applications, a multi-processor (MP) version of the linear model could be of interest,

due to either storage limitations in each individual processor node, or the need for fast computation.

This chapter considers multi-processor linear model (MP-LM) [Mot12; Pat14; Han14; Rav15; Han15a;

Han16], in which there are P processor nodes and a fusion center. Recall from (1.2) that in an MP-

LM, each processor node stores M
P rows of the matrix A, and acquires the corresponding linear

measurements of the underlying signal x. Without loss of generality, we model the measurement
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system in processor node p ∈ {1, · · · , P } as

yi =Ai x+ zi , i ∈
§

M (p −1)
P

+1, · · · ,
M p

P

ª

, (4.2)

where Ai is the i -th row of A, and yi and zi are the i -th entries of y and z, respectively. Once every yi is

collected, we run distributed algorithms among the fusion center and P processor nodes to estimate

the signal x. MP versions of AMP (MP-AMP) for MP-LM have been studied in the literature [Han14;

Han16]. Usually, MP platforms are designed for distributed settings such as sensor networks [PK00;

Est02] or large-scale “big data" computing systems [Ec2], where the computational and commu-

nication burdens can differ among different settings. We reduce the communication costs of MP

platforms by applying lossy compression [Ber71; CT06; GG93] to the communication portion of

MP-AMP. Our key idea in this work is to minimize the total communication and computation costs

by varying the lossy compression schemes in different iterations of MP-AMP.

4.1.2 Contributions

Rate-distortion (RD) theory suggests that we can transmit data with greatly reduced coding rates, if

we allow some distortion at the output. However, the MP-AMP problem does not directly fall into the

RD framework, because the quantization error in the current iteration feeds into estimation errors in

future iterations. We quantify the interaction between these two forms of error by studying the excess

mean squared error (EMSE) of MP-AMP above the MMSE (EMSE=MSE-MMSE, where MSE denotes

the mean squared error). Our first contribution (Section 4.3) is to use dynamic programming (DP, cf.

Bertsekas [Ber95]) to find a sequence of coding rates that yields a desired EMSE while achieving the

smallest combined cost of communication and computation; our DP-based scheme is proved to

yield optimal coding rates.

Our second contribution (Section 4.4) is to pose the task of finding the optimal coding rate at

each iteration in the low EMSE limit as a convex optimization problem. We prove that the optimal

coding rate grows approximately linearly in the low EMSE limit. At the same time, we also provide

the theoretic asymptotic growth rate of the optimal coding rates in the limit of low EMSE. This

provides practitioners with a heuristic to find a near-optimal coding rate sequence without solving

the optimization problem. The linearity of the optimal coding rate sequence (defined in Section 4.3)

is also illustrated numerically. With the rate being approximately linear, we obtain that the combined

cost of computation and communication scales as O (log2(1/EMSE)).

In Section 4.5, we further consider a rich design space that includes various costs, such as the

number of iterations T , aggregate coding rate Ra g g , which is the sum of the coding rates in all

iterations and is formally defined in (4.14), and the MSE achieved by the estimation algorithm. In

such a rich design space, reducing any cost is likely to incur an increase in other costs, and it is

impossible to simultaneously minimize all the costs. Han et al. [Han14] reduce the communication
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costs, and Ma et al. [Ma14c] develop an algorithm with reduced computation; both works [Han14;

Ma14c] achieve a reasonable MSE. However, the optimal trade-offs in this rich design space have not

been studied. Our third contribution is to pose the problem of finding the best trade-offs among the

individual costs T , Ra g g , and MSE as a multi-objective optimization problem (MOP), and study the

properties of Pareto optimal tuples [DD98] of this MOP. These properties are verified numerically

using the DP-based scheme developed in this chapter.

Finally, we emphasize that although this chapter is presented for the specific framework of MP-

AMP, similar methods could be applied to other iterative distributed algorithms, such as consensus

averaging [Fra08; Tha13], to obtain the optimal coding rate as well as optimal trade-offs between

communication and computation costs.

Organization: The rest of the chapter is organized as follows. Section 4.2 provides background

content. Section 4.3 formulates a DP scheme that finds an optimal coding rate. Section 4.4 proves

that any optimal coding rate in the low EMSE limit grows approximately linearly as iterations

proceed. Section 4.5 studies the optimal trade-offs among the computation cost, communication

cost, and the MSE of the estimate. Section 4.6 uses some real-world examples to showcase the

different trade-offs between communication and computation costs, and Section 4.7 concludes the

chapter.

4.2 Background

4.2.1 Centralized linear model using AMP

In our linear model (4.1), we consider an independent and identically distributed (i.i.d.) Gaussian

measurement matrix A, i.e., Ai , j ∼N (0, 1
M ), whereN (µ,σ2) denotes a Gaussian distribution with

mean µ and variance σ2. The signal entries follow an i.i.d. distribution, fX (x ). The noise entries

obey zi ∼N (0,σ2
Z ), whereσ2

Z is the noise variance.

Starting from x0 = 0, the AMP framework [Don09] proceeds iteratively according to1

xt+1 =ηt (A
>rt +xt ), (4.3)

rt = y−Axt +
1

κ
rt−1〈η′t−1(A

>rt−1+xt−1)〉, (4.4)

where ηt (·) is a denoising function, η′t (·) =
dηt (·)

d {·} is the derivative of ηt (·), and 〈u〉 = 1
N

∑N
i=1 ui for

any vector u ∈RN . The subscript t represents the iteration index, {·}> denotes the matrix transpose

operation, and κ= M
N is the measurement rate. Owing to the decoupling effect [Tan02; GV05; GW08],

in each AMP iteration [BM11; Mon12; RV16], the vector ft =A>rt +xt in (4.3) is statistically equivalent

1AMP is an approximation to the belief propagation algorithm (2.11).
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to the input signal x corrupted by AWGN wt generated by a source W ∼N (0,σ2
t ),

ft = x+wt . (4.5)

We call (4.5) the equivalent scalar channel. In large systems (N →∞, M
N → κ),2 a useful property of

AMP [BM11; Mon12; RV16] is that the noise varianceσ2
t evolves following state evolution (SE):

σ2
t+1 =σ

2
Z +

1

κ
MSE(ηt ,σ2

t ), (4.6)

where MSE(ηt ,σ2
t ) =EX ,W

�

�

ηt (X +W )−X
�2�

, EX ,W (·) is expectation with respect to (w.r.t.) X and

W , and X is the source that generates x. Note that σ2
1 =σ

2
Z +
E[X 2]
κ , because of the all-zero initial

estimate for x. Formal statements for SE appear in prior work [BM11; Mon12; RV16].

In this chapter, we confine ourselves to the Bayesian setting, in which we assume knowledge of

the true prior, fX (x ), for the signal x. Therefore, throughout this chapter we use conditional expecta-

tion, ηt (·) =E[x|ft ], as the MMSE-achieving denoiser.3 The derivative of ηt (·), which is continuous,

can be easily obtained, and is omitted for brevity. Other denoisers such as soft thresholding [Don09;

Mon12; BM11] yield MSE’s that are larger than that of the MMSE denoiser, ηt (·) =E[x|ft ]. When the

true prior for x is unavailable, parameter estimation techniques can be used [Ma16]; Ma et al. [Ma15]

study the behavior of AMP when the denoiser uses a mismatched prior.

4.2.2 MP-LM using lossy MP-AMP

In the sensing problem formulated in (4.2), the measurement matrix is stored in a distributed

manner in each processor node. Lossy MP-AMP [Han16] iteratively solves MP-LM using lossily

compressed messages:

Processor nodes: rp
t = yp −Ap xt +

1

κ
rp

t−1ωt−1, (4.7)

fp
t =

1

P
xt + (A

p )>rp
t , (4.8)

Fusion center: fQ ,t =
P
∑

p=1

Q (fp
t ), ωt = 〈dηt (fQ ,t )〉, (4.9)

xt+1 =ηt (fQ ,t ), (4.10)

2Note that the results of this chapter only hold for large systems.
3Tan et al. [Tan14a] showed that AMP with MMSE-achieving denoisers can be used as a building block for algorithms

that minimize arbitrary user-defined error metrics.
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where Q (·) denotes quantization, and an MP-AMP iteration refers to the process from (4.7) to (4.10).

The processor nodes send quantized (lossily compressed) messages, Q (fp
t ), to the fusion center. The

reader might notice that the fusion center also needs to transmit the denoised signal vector xt and a

scalarωt−1 to the processor nodes. The transmission ofωt−1 is negligible, and the fusion center

may broadcast xt so that naive compression of xt , such as compression with a fixed quantizer, is

sufficient. Hence, we will not discuss possible compression of messages transmitted by the fusion

center.

Assume that we quantize fp
t ,∀p , and use C bits to encode the quantized vector Q (fp

t ) ∈ RN .

According to (2.9), the coding rate is R = C
N . We incur an expected distortion

D
p
t =E

�

1

N

N
∑

i=1

(Q ( f p
t ,i )− f

p
t ,i )

2

�

at iteration t in each processor node,4 where Q ( f p
t ,i ) and f

p
t ,i are the i -th entries of the vectors Q (fp

t )

and fp
t , respectively, and the expectation is over fp

t . When the size of the problem grows, i.e., N →∞,

the rate-distortion (RD) function, denoted by R (D ), offers the fundamental information theoretic

limit on the coding rate R for communicating a long sequence up to distortion D [CT06; Ber71;

GG93; WV12a]. A pivotal conclusion from RD theory is that coding rates can be greatly reduced

even if D is small. The function R (D ) can be computed in various ways [Ari72; Bla72; Ros94], and

can be achieved by an RD-optimal quantization scheme in the limit of large N . Other quantization

schemes may require larger coding rates to achieve the same expected distortion D .

The goal of this chapter is to understand the fundamental trade-offs for MP-LM using MP-AMP.

Hence, unless otherwise stated, we assume that appropriate vector quantization (VQ) schemes [Lin80;

Gra84; GG93], which achieve R (D ), are applied within each MP-AMP iteration, although our analysis

is readily extended to practical quantizers such as entropy coded scalar quantization (ECSQ) [GG93;

CT06]. (Note that the cost of running quantizers in each processor node is not considered, because

the cost of processing a bit is usually much smaller than the cost of transmitting it.) Therefore, the

signal at the fusion center before denoising can be modeled as

fQ ,t =
P
∑

p=1

Q (fp
t ) = x+wt +nt , (4.11)

where wt is the equivalent scalar channel noise (4.5) and nt is the overall quantization error whose

entries followN (0, P Dt ). Because the quantization error, nt , is a sum of quantization errors in the

P processor nodes, nt resembles Gaussian noise due to the central limit theorem. Han et al. suggest

4Because we assume that A and z are both i.i.d., the expected distortions are the same over all P nodes, and can be
denoted by Dt for simplicity. Note also that Dt =E[(Q ( f

p
t ,i )− f p

t ,i )
2] due to x being i.i.d.
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that SE for lossy MP-AMP [Han16] (called lossy SE) follows

σ2
t+1 =σ

2
Z +

1

κ
MSE(ηt ,σ2

t +P Dt ), (4.12)

whereσ2
t can be estimated by Òσ2

t =
1

M ‖rt ‖2
2 with ‖ · ‖p denoting the `p norm [BM11; Mon12], and

σ2
t+1 is the variance of wt+1.

The rigorous justification of (4.12) by extending the framework put forth by Bayati and Monta-

nari [BM11] and Rush and Venkataramanan [RV16] is left for future work. Instead, we argue that

lossy SE (4.12) asymptotically tracks the evolution of σ2
t in lossy MP-AMP in the limit of P Dt

σ2
t
→ 0.

Our argument is comprised of three parts: (i) wt and nt (4.11) are approximately independent in

the limit of P Dt

σ2
t
→ 0, (ii) wt +nt is approximately independent of x in the limit of P Dt

σ2
t
→ 0, and

(iii) lossy SE (4.12) holds if (i) and (ii) hold. The first part (wt and nt are independent) ensures that

we can track the variance of wt +nt withσ2
t +P Dt . The second part (wt +nt is independent of x)

ensures that lossy MP-AMP follows lossy SE (4.12) as it falls under the general framework discussed

in Bayati and Montanari [BM11] and Rush and Venkataramanan [RV16]. Hence, the third part of our

argument holds. The first two parts are backed up by extensive numerical evidence in Appendix B.1,

where ECSQ [GG93; CT06] is used; ECSQ approaches R (D )within 0.255 bits in the high rate limit

(corresponds to small distortion) [GG93]. Furthermore, Appendix B.2 provides extensive numerical

evidence to show that lossy SE (4.12) indeed tracks the evolution of the MSE when wt and nt are

independent and wt +nt and x are independent.

Although lossy SE (4.12) requires P Dt

σ2
t
→ 0, if scalar quantization is used in a practical implemen-

tation, then lossy SE approximately holds when γ< 2σtp
P

, where γ is the quantization bin size of the

scalar quantizer (details in Appendices B.1 and B.2). Note that the condition γ< 2σtp
P

is motivated by

Widrow and Kollár [WK08]. If appropriate VQ schemes [Lin80; Gra84; GG93] are used, then we might

need milder requirements than P Dt

σ2
t
→ 0 in the scalar quantizer case, in order for wt and nt to be

independent and for wt +nt and x to be independent.

Denote the coding rate used to transmit Q (fp
t ) at iteration t by Rt . The sequence R= (R1, · · · , RT )

is called the coding rate sequence, where T is the total number of MP-AMP iterations. Given R, the

distortion Dt can be evaluated with R (D ), and the scalar channel noise varianceσ2
t can be evaluated

with (4.12). Hence, the MSE for R can be predicted. The MSE at the last iteration is called the final

MSE.

4.3 Optimal Rates Using Dynamic Programming

In this section, we first define the cost of running MP-AMP. We then use DP to find an optimal coding

rate sequence with minimum cost, while achieving a desired EMSE.
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Definition 4.1 (Combined cost). Define the cost of estimating a signal in an MP system as

C b (R) = b ‖R‖0+ ‖R‖1, (4.13)

where ‖R‖0 = T is the number of iterations to run, and ‖R‖1 is the aggregate coding rate, denoted also

by Ra g g ,

Ra g g = ‖R‖1 =
T
∑

t=1

Rt . (4.14)

The parameter b is the cost of computation in one MP-AMP iteration normalized by the cost of

transmitting Q (fp
t ) (4.9) at a coding rate of 1 bit/entry. Also, the cost at iteration t is

C b
t (Rt ) = b ×1Rt 6=0+Rt , (4.15)

where the indicator function 1A is 1 if the conditionA is met, else 0. Hence, C b (R) =
∑T

t=1 C b
t (Rt ).

In some applications, we may want to obtain a sufficiently small EMSE at minimum cost (4.13),

where the physical meaning of the cost varies in different problems (cf. Section 4.6). Denote the

EMSE at iteration t by εt . Hence, the final EMSE at the output of MP-AMP is εT .

Let us formally state the problem. Our goal is to obtain a coding rate sequence R for MP-AMP

iterations, which is the solution of the following optimization problem:

minimize C b (R) subject to εT ≤∆. (4.16)

We now have a definition for the optimal coding rate sequence.

Definition 4.2 (Optimal coding rate sequence). An optimal coding rate sequence R∗ is a solution

of (4.16).

To compute R∗, we derive a dynamic programming (DP) [Ber95] scheme, and then prove that it

is optimal.

Dynamic programming scheme: Suppose that MP-AMP is at iteration t . Define the smallest

cost for the (T − t ) remaining iterations to achieve the EMSE constraint, εT ≤∆, as ΦT−t (σ2
t ), which

is a function of the scalar channel noise variance at iteration t ,σ2
t (4.11). Hence, ΦT−1(σ2

1) is the cost

for solving (4.16), whereσ2
1 =σ

2
Z +

1
κE[X 2] is due to the all-zero initialization of the signal estimate.

DP uses a base case and recursion steps to find ΦT−1(σ2
1). In the base case of DP, T − t = 0, the

cost of running MP-AMP is C b
T (RT ) = b ×1RT 6=0+RT (4.15). Ifσ2

T is not too large, then there exist

some values for RT that satisfy εT ≤∆; for theseσ2
T and RT , we have Φ0(σ2

T ) =minRT
C b

T (RT ). Ifσ2
T

is too large, even lossless transmission of fp
T during the single remaining MP-AMP iteration (4.12)

does not yield an EMSE that satisfies the constraint, εT ≤∆, and we assign Φ0(σ2
T ) =∞ for suchσ2

T .
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Next, in the recursion steps of DP, we iterate back in time by decreasing t (equivalently, increasing

T − t ),

ΦT−t (σ
2
t )=min

bR

�

C b
t (bR ) +ΦT−(t+1)(σ

2
t+1(bR ))

	

, (4.17)

where bR is the coding rate used in the current MP-AMP iteration t , the equivalent scalar channel

noise variance at the fusion center isσ2
t (4.11), andσ2

t+1(bR ), which is obtained from (4.12), is the

variance of the scalar channel noise (4.11) in the next iteration after transmitting fp
t at rate bR . The

terms on the right hand side are the current cost of MP-AMP (4.15) (including computational and

communication costs) and the minimum combined cost in all later iterations, t +1, · · · , T .

The coding rates bR that yield the smallest cost ΦT−t (σ2
t ) for different t and σ2

t are stored in

a table R(t ,σ2
t ). After DP finishes, we obtain the coding rate for the first MP-AMP iteration as

R1 = R(1,σ2
Z +

1
κE[X 2]). Using R1, we calculate σ2

t from (4.12) for t = 2 and find R2 = R(2,σ2
2).

Iterating from t = 1 to T , we obtain R= (R1, · · · , RT ).

To be computationally tractable, the proposed DP scheme should operate in discretized search

spaces forσ2
{·} and R{·}. Details about the resolutions ofσ2

{·} and R{·} appear in Appendix B.3.

In the following, we state that our DP scheme yields the optimal solution. The proof appears in

Appendix B.4.

Lemma 4.1. The dynamic programming formulation in (4.17) yields an optimal coding rate sequence

R∗, which is a solution of (4.16) for the discretized search spaces of Rt andσ2
t , ∀t .

Lemma 4.1 focuses on the optimality of our DP scheme in discretized search spaces for Rt and

σ2
t . It can be shown that we can achieve a desired accuracy level in R∗ by adjusting the resolutions

of the discretized search spaces for Rt andσ2
t . Suppose that the discretized search spaces forσ2

{·}
and R{·} have K1 and K2 different values, respectively. Then, the computational complexity of our

DP scheme is O (T K1K2).

Optimal coding rate sequence given by DP: Consider estimating a Bernoulli-Gaussian signal,

X = XB XG , (4.18)

where XB ∼ Ber(ρ) is a Bernoulli random variable, ρ is called the sparsity rate of the signal, and

XG ∼N (0, 1); here we use ρ = 0.1. Note that the results in this chapter apply to priors, fX (x ), other

than (4.18).

We run our DP scheme on a problem with relatively small desired EMSE,∆= 5×10−5, in the

last iteration T . The signal is measured in an MP platform with P = 100 processor nodes according

to (4.2). The measurement rate is κ= M
N = 0.4, and the noise variance isσ2

Z =
1

400 . The parameter

b = 2 (4.13). We use ECSQ [GG93; CT06] as the quantizer in each processor node, and use the

corresponding relation between the rate Rt and distortion Dt of ECSQ in our DP scheme. Note that

we require the quantization bin size to be smaller than 2σtp
P

, according to Section 4.2.2. Figure 4.1
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Figure 4.1 The optimal coding rate sequence R∗ (top panel) and optimal EMSE ε∗t (bottom) given by DP are
shown as functions of t . (Bernoulli-Gaussian signal (4.18) with ρ = 0.1, κ= 0.4, P = 100,σ2

Z =
1

400 , and b = 2.)

illustrates the optimal coding rate sequence R∗ and optimal EMSE ε∗t given by DP as functions of

the iteration number t .

It is readily seen that after the first 5–6 iterations the coding rate seems near-linear. The next

section proves that any optimal coding rate sequence R∗ is approximately linear in the limit of

EMSE→ 0. However, our proof involves the large t limit, and does not provide insights for small t .

We ran DP for various configurations. Examining all R∗ from our DP results, we notice that the coding

rate is monotone non-decreasing, i.e., R ∗1 ≤ R ∗2 ≤ · · · ≤ R ∗T . This seems intuitive, because in early

iterations of (MP-)AMP, the scalar channel noise wt is large, which does not require transmitting fp
t

(cf. (4.8)) at high fidelity. Hence, a low rate R ∗t suffices. As the iterations proceed, the scalar channel

noise wt in (4.11) decreases, and the large quantization error nt would be unfavorable for the final

MSE. Hence, higher rates are needed in later iterations.

4.4 Properties of Optimal Coding Rate Sequences

4.4.1 Intuition

We start this section by providing some brief intuitions about why optimal coding rate sequences

are approximately linear when the EMSE is small.

Consider a case where we aim to reach a low EMSE. Montanari [Mon12] provided a geometric

interpretation of the relation between the MSE performance of AMP at iteration t and the denoiser

ηt (·) being used.5 In the limit of small EMSE, the EMSE decreases by a nearly-constant multiplicative

factor per AMP iteration, yielding a geometric decay of the EMSE. In MP-AMP, in addition to the

5We will also provide such an interpretation in Section 4.4.2.
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(a) (b) (c)

Figure 4.2 Geometric interpretation of SE. In all panels, the thick solid curves correspond to g I (·) and gS (·),
and their offset versions eg I (·) and egS (·). The solid lines with arrows correspond to the SE of AMP. Dashed lines
without arrows are auxiliary lines. Panel (a): Illustration of centralized SE. Panel (b): Zooming in to the small
region just above point S∞. Panel (c): Illustration of lossy SE.

equivalent scalar channel noise wt , we have additive quantization error nt (4.11). In order for the

EMSE in an MP-AMP system to decay geometrically, the distortion Dt must decay at least as quickly.

To obtain this geometric decay in Dt , recall that in the high rate limit, the distortion-rate function

typically takes the form D (R )≈C12−2R [GN98] for some positive constant C1. We propose for Rt to

have the form, Rt ≈C2+C3t , where C2 and C3 are constants. In the remainder of this section, we

first discuss the geometric interpretation of AMP state evolution, followed by our results about the

linearity of optimal coding rate sequences. The detailed proofs appear in the appendices.

4.4.2 Geometric interpretation of AMP state evolution

Centralized SE: The equivalent scalar channel of AMP is given by (4.5). We rewrite the centralized

AMP SE (4.6) as follows [Don09; BM11; RV16],

σ2
t+1−σ

2
Z

︸ ︷︷ ︸

g I (σ2
t+1)

=
N

M
MSEηt

(σ2
t )

︸ ︷︷ ︸

gS (σ2
t )

, (4.19)

where MSEηt
(σ2

t ) denotes the MSE after denoising ft (4.5) using ηt (·). The functions g I (·) and gS (·)
are illustrated in Figure 4.2a with solid curves; the meanings of I and S will become clear below.

We see that g I (σ2
t ) is an affine function with unit slope, whereas gS (σ2

t ) is generally a non-linear

function of σ2
t (see Figure 4.2a). The lines with arrows illustrate the state evolution (SE). Details

appear below.

In Figure 4.2a, we present a geometric interpretation of SE. The horizontal axis is the scalar

channel noise variance σ2 and the vertical axis represents the scaled MSE, u = N
M MSE. Let St =

(σ2
t , ut ) be the state point that is reached by SE in iteration t . We follow the SE trajectory St → It →
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St+1→ ·· · in Figure 4.2a, where It = (σ2
t+1, ut ) represents the intermediate point in the transition

between states St and St+1 corresponding to iterations t and t +1, respectively. Observe that the

points St and It have the same ordinate (ut ), while St+1 and It have the same abscissa (σ2
t+1), which

are related as σ2
t+1 = g −1

I (ut ) and ut+1 = gS (σ2
t+1). As t grows, σ2

t converges to σ2
∞, which is the

abscissa of the point S∞. The ordinate of point S∞ is u∞ =
N
M MSE∞, where MSE∞ =MMSE. If we

stop the algorithm at iteration T , or equivalently at point ST = (σ2
T , uT ), the corresponding MSE,

MSET , has an EMSE of εT =MSET −MMSE.

In Figure 4.2b, we zoom into the neighborhood of point S∞. To make the presentation more

concise, we vertically offset g I (·) and gS (·) by N
M MMSE and horizontally offset them byσ2

∞; we call

the resulting functions eg I (·) and egS (·), respectively. Hence, the vertical axis in Figure 4.2b represents

the scaled EMSE, eu = N
M EMSE= N

M ε, and we have eg I (eσ2
t ) = g I (eσ2

t +σ
2
∞)−

N
M MMSE and egS (eσ2

t ) =

gS (eσ2
t +σ

2
∞)−

N
M MMSE. Observe that eg I (0) = egS (0) = 0. Additionally, the slope of eg I (eσ2

t ) is eg
′
I (eσ

2
t ) = 1,

where eg ′I (·) is the first-order derivative of eg I (·)w.r.t. eσ2
t (Figure 4.2b). Because the MSE function for

the MMSE-achieving denoiser is continuous and differentiable twice [WV11], we can invoke Taylor’s

theorem to express

egS (eσ
2
t ) = eg

′
S (0)eσ

2
t +

1

2
eg ′′S (ζt )eσ

4
t , (4.20)

where ζt ∈ (0, eσ2
t ), and eg ′S (eσ

2
t ) and eg ′′S (eσ

2
t ) are the first- and second-order derivatives of egS (·)w.r.t. eσ2

t ,

respectively. Due to continuity and differentiability of the denoising function, egS (·) is invertible in a

neighborhood around 0, and its inverse is denoted by eg −1
S (·). Invoking Taylor’s theorem,

eg −1
S (eut ) = (eg

−1
S )
′(0)eut +

1

2
(eg −1

S )
′′(ζt )eu

2
t , (4.21)

where ζt ∈ (0, eut ), and (eg −1
S )
′(eut ) and (eg −1

S )
′′(eut ) are the first- and second-order derivatives of eg −1

S (·)
w.r.t. eut , respectively. When t →∞, eσ2

t → 0 and eut → 0, and the higher-order terms become
1
2 eg
′′
S (ξt )eσ4

t = O (eσ4
t ) and 1

2 (eg
−1
S )
′′(ζt )eu 2

t = O (eu 2
t ). In other words, both egS (eσ2

t ) and eg −1
S (eut ) become

approximately linear functions, as shown in Figure 4.2b. We further denote the slope of egS (0) by θ ,

i.e.,

θ = eg ′S (0) =
1

(eg −1
S )′(0)

. (4.22)

To calculate the slope θ , we first calculate the scalar channel noise variance for point S∞,σ2
∞,

by using replica analysis [ZB13; Krz12a],6 and obtain θ = g ′S (σ
2
∞) = eg ′S (0). Moreover, the slope of

egS (0) satisfies θ = eg ′S (0) ∈ (0, 1); otherwise, the curves eg I (·) and egS (·)would not intersect at point S∞.

6The outcome of replica analysis [ZB13; Krz12a] is close to simulating SE (4.19) with a large number of iterations.
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Lossy SE: Considering lossy SE (4.12), we have

σ2
t+1−σ

2
Z

︸ ︷︷ ︸

g I (σ2
t+1)

=
N

M
MSEηt

(σ2
t +P Dt )

︸ ︷︷ ︸

gS (σ2
t+P Dt )

, (4.23)

where P is the number of processor nodes in an MP network, and Dt is the expected distortion

incurred by each node at iteration t . Note that lossy SE has not been rigorously proved in the

literature, although we argued in Section 4.2.2 that it tracks the evolution of the equivalent scalar

channel noise varianceσ2
t when Dt � 1

Pσ
2
t .

We notice the additional term P Dt , which corresponds to the distortion at the fusion center.

Because the P nodes transmit their signals fp
t with distortion Dt , and their messages are independent,

the fusion center’s signal has distortion P Dt . The lines with arrows in Figure 4.2c illustrate the lossy

SE after vertically offsetting g I (·) and gS (·) by N
M MMSE and horizontally offsetting g I (·) and gS (·) by

σ2
∞. After arriving at point eSt , we move horizontally to eJt , and obtain the ordinate of eIt , eut , from

egS (eσ2
t +P Dt ) = eut . Geometrically, SE is dragged to the right by distance P Dt from point eJt to eIt , and

then SE descends from eIt to eSt+1.

4.4.3 Asymptotic linearity of the optimal coding rate sequence

Recall from (4.20) that limt→∞ eσ2
t = 0. Hence, as t grows, ft ,i (4.5) converges in distribution to

xi +N (0,σ2
∞). Therefore, the RD function converges to some fixed function as t grows. For large

coding rate R , this function has the form

Rt =
1

2
log2

�

C1

Dt

�

(1+ot (1)), (4.24)

for some constant C1 that does not depend on t [GN98]. Note that the assumption of eσ2
t being small

implicitly requires the coding rate used in the corresponding iteration to be large.

For an optimal coding rate sequence R∗, we call the distortion D ∗t , derived from (4.24), incurred

by the optimal coding rate R ∗t at a certain iteration t the optimal distortion. Correspondingly, we

call the EMSE achieved by MP-AMP with R∗, denoted by ε∗t , the optimal EMSE at iteration t . In

the following, we state our main results on the optimal coding rate, the optimal distortion, and the

optimal EMSE.

Theorem 4.1 (Linearity of the optimal coding rate sequence). Supposing that lossy SE (4.23) holds,

we have

lim
t→∞

D ∗t+1

D ∗t
= θ , (4.25)
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where θ is defined in (4.22). Furthermore,

lim
t→∞

�

R ∗t+1−R ∗t
�

=
1

2
log2

�

1

θ

�

. (4.26)

Theorem 4.1 is proved in Appendix B.5.

Remark 4.1. Define the additive growth rate of an optimal coding rate sequence R∗ at iteration t as

R ∗t+1−R ∗t . Theorem 4.1 not only shows that any optimal coding rate sequence grows approximately

linearly in the low EMSE limit, but also provides a way to calculate its additive growth rate in the

low EMSE limit. Hence, if the goal is to achieve a low EMSE, practitioners could simply use a coding

rate sequence that has a fixed coding rate in the first few iterations and then increases linearly with

additive growth rate 1
2 log2

�

1
θ

�

.

The following theorem provides (i) the relation between the optimal distortion D ∗t+1 and the

optimal EMSE ε∗t in the large t limit, and (ii) the convergence rate of the optimal EMSE ε∗t .

Theorem 4.2. Assuming that lossy SE (4.23) holds, we have

lim
t→∞

D ∗t
ε∗t
= 0. (4.27)

Furthermore, the convergence rate of the optimal EMSE is

lim
t→∞

ε∗t+1

ε∗t
= θ . (4.28)

Theorem 4.2 is proved in Appendix B.6. Note that limt→∞
D ∗t
ε∗t
= 0 meets the requirement P Dt

σ2
t
→ 0

discussed in Section 4.2.2. Extending Theorems 4.1 and 4.2, we have the following result.

Corollary 4.3. Assuming that lossy SE (4.12) holds, the combined computation and communication

cost (4.13) scales as O (log2(1/∆)), ∀b > 0, where∆ is the desired EMSE.

Proof. Given Theorem 4.2, we obtain that the optimal EMSE, ε∗t , indeed decreases geometrically

in the large t limit (as a reminder, we provided such intuition in Section 4.4.1). Considering (4.14)

and Theorem 4.1, the total computation and communication cost (4.13) for running T iterations is

C b (R∗) =O (T 2) =O (log2(1/ε∗T )) =O (log2(1/∆)).

Remark 4.2. The key to the proofs of Theorems 4.1 and 4.2 is lossy SE (4.23). We expect that the

linearity of the optimal coding rate sequence could be extended to other iterative distributed algorithms

provided that (i) they have formulations similar to lossy SE (4.23) that track their estimation errors and

(ii) their estimation errors converge geometrically. Moreover, formulations that track the estimation

error in such algorithms might require less restrictive constraints than AMP. For example, consensus
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MSE achieved: -23.213dB (MMSE: -23.218dB)

Figure 4.3 Comparison of the additive growth rate of the optimal coding rate sequence given by DP at low
EMSE and the asymptotic additive growth rate 1

2 log2

�

1
θ

�

. (Bernoulli-Gaussian signal (4.18) with ρ = 0.2, κ=
1, P = 100,σ2

Z = 0.01, b = 0.782.)

averaging [Fra08; Tha13] only requires i.i.d. entries in the vector that each node in the network

averages.

4.4.4 Comparison of DP results to Theorem 4.1

We run DP (cf. Section 4.3) to find an optimal coding rate sequence R∗ for the setting of P = 100

nodes, a Bernoulli-Gaussian signal (4.18) with sparsity rate ρ = 0.2, measurement rate κ= 1, noise

varianceσ2
Z = 0.01, and parameter b = 0.782. The goal is to achieve a desired EMSE of 0.005 dB, i.e.,

10 log10

�

1+ ∆
MMSE

�

= 0.005. We use ECSQ [GG93; CT06] as the quantizer in each processor node and

use the corresponding relation between the rate Rt and distortion Dt of ECSQ in the DP scheme.

Note that we require the quantization bin size γ to be smaller than 2σtp
P

, according to Section 4.2.2. We

know that ECSQ achieves a coding rate within an additive constant of the RD function R (D ) [GG93].

Therefore, the additive growth rate of the optimal coding rate sequence obtained for ECSQ will be

the same as the additive growth rate if the RD relation is modeled by R (D ) [CT06; Ber71; GG93;

WV12a].

The resulting optimal coding rate sequence is plotted in Figure 4.3. The additive growth rate of

the last six iterations is 1
6 (R

∗
12−R ∗6 ) = 0.742, and the asymptotic additive growth rate according to

Theorem 4.1 is 1
2 log2

�

1
θ

�

≈ 0.751. Note that we use∆Rt = 0.05 in the discretized search space for

Rt . Hence, the discrepancy of 0.009 between the additive growth rate from the simulation and the

asymptotic additive growth rate is within our numerical precision. In conclusion, our numerical

result matches the theoretical prediction of Theorem 4.1.
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4.5 Achievable Performance Region

Following the discussion of Section 4.2, we can see that the lossy compression of fp
t ,∀p ∈ {1, · · · , P },

can reduce communication costs. On the other hand, the greater the savings in the coding rate

sequence R, the worse the final MSE is expected to be. If a certain level of final MSE is desired

despite a small coding rate budget, then more iterations T will be needed. As mentioned above,

there is a trade-off between T , Ra g g , and the final MSE, i.e., MMSE+∆, and there is no solution

that minimizes them simultaneously. To deal with such trade-offs, which implicitly correspond

to sweeping b in (4.13) in a multi-objective optimization (MOP) problem, it is customary to think

about Pareto optimality [DD98].

4.5.1 Properties of achievable region

For notational convenience, denote the set of all MSE values achieved by the pair (T , Ra g g ) for some

parameter b (4.13) by E (T , Ra g g ). Within (T , Ra g g ), let the smallest MSE be MSE∗(T , Ra g g ). We now

define the achievable setC ,

C := {(T , Ra g g , MSE) ∈R3
≥0 : MSE ∈ E (T , Ra g g )},

whereR≥0 is the set of non-negative real numbers. That is,C contains all tuples (T , Ra g g , MSE) for

which some instantiation of MP-AMP estimates the signal at the desired MSE level using T iterations

and aggregate coding rate Ra g g .

Definition 4.3. The pointX1 ∈C is said to dominate another pointX2 ∈C , denoted byX1 ≺X2, if

T1 ≤ T2, Ra g g1
≤ Ra g g2

, and MSE1 ≤MSE2. A pointX ∗ ∈C is Pareto optimal if there does not exist

X ∈C satisfyingX ≺X ∗. Furthermore, letP denote the set of all Pareto optimal points,

P := {X ∈C :X is Pareto optimal}. (4.29)

In words, the tuple (T , Ra g g , MSE) is Pareto optimal if no other tuple (ÒT , bRa g g ,ÕMSE) exists such

that ÒT ≤ T , bRa g g ≤Ra g g , and ÕMSE≤MSE. Thus, the Pareto optimal tuples belong to the boundary

ofC .

We extend the definition of the number of iterations T to a probabilistic one. To do so, suppose

that the number of iterations is drawn from a probability distributionπ overN, such that
∑∞

i=1πi = 1.

Of course, this definition contains a deterministic T = j as a special case with π j = 1 and πi = 0

for all i 6= j . Armed with this definition of Pareto optimality and the probabilistic definition of the

number of iterations, we have the following lemma.

Lemma 4.2. For a fixed noise varianceσ2
Z , measurement rate κ, and P processor nodes in MP-AMP,

the achievable setC is a convex set.
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Figure 4.4 Pareto optimal results provided by DP under a variety of parameters b (4.13): (a) Pareto optimal
surface, (b) Pareto optimal aggregate coding rate R ∗a g g (4.14) versus the achieved MSE for different optimal
MP-AMP iterations T , and (c) Pareto optimal R ∗a g g (4.14) versus the number of iterations T for different

optimal MSE’s. The signal is Bernoulli-Gaussian (4.18) with ρ = 0.1. (κ= 0.4, P = 100, andσ2
Z =

1
400 .)

Proof. We need to show that for any (T (1), R (1)a g g , MSE(1)), (T (2), R (2)a g g , MSE(2)) ∈C and any 0<λ< 1,

(λT (1)+ (1−λ)T (2),λR (1)a g g + (1−λ)R
(2)
a g g ,λMSE(1)+ (1−λ)MSE(2)) ∈C . (4.30)

This result is shown using time-sharing arguments (see Cover and Thomas [CT06]). Assume that

(T (1), R (1)a g g , MSE(1)), (T (2), R (2)a g g , MSE(2)) ∈ C are achieved by probability distributions π(1) and π(2),

respectively. Let us select all parameters of the first tuple with probability λ and those of the second

with probability (1−λ). Hence, we have π=λπ(1)+(1−λ)π(2). Due to the linearity of expectation,

T =λT (1)+ (1−λ)T (2) and MSE=λMSE(1)+ (1−λ)MSE(2). Again, due to the linearity of expectation,

Ra g g =λR (1)a g g + (1−λ)R
(2)
a g g , implying that (4.30) is satisfied, and the proof is complete.

Definition 4.4. Let the function R ∗(T , MSE) :R2
≥0→R≥0 be the Pareto optimal rate function, which

is implicitly described as R ∗(T , MSE) = R ∗a g g ⇔ (T , R ∗a g g , MSE) ∈ P . We further define implicit

functions T ∗(Ra g g , MSE) and MSE∗(T , Ra g g ) in a similar way.

Corollary 4.4. The functions R ∗(T , MSE), T ∗(Ra g g , MSE), and MSE∗(T , Ra g g ) are convex in their ar-

guments.

Note that our proof for the convexity of the setC might be extended to other iterative distributed

learning algorithms that transmit lossily compressed messages.

4.5.2 Pareto optimal points via DP

After proving that the achievable set C is convex, we apply DP in Section 4.3 to find the Pareto

optimal points, and validate the convexity of the achievable set.
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According to Definition 4.3, the resulting tuple (T , Ra g g , MSE) computed using DP (Section 4.3)

is Pareto optimal on the discretized search spaces. Hence, in this subsection, we run DP to obtain

the Pareto optimal points for a certain distributed linear model by sweeping the parameter b (4.13).

Consider the same setting as in Figure 4.1, except that we analyze MP platforms [PK00; Est02;

Ec2] for different b (4.13). Running the DP scheme of Section 4.3, we obtain the optimal coding

rate sequence R∗ that yields the lowest combined cost while providing a desired EMSE that is at

most ∆ ∈ {1,2, · · · ,5}×MMSE or equivalently MSE ∈ {2,3, · · · ,6}×MMSE. In Figure 4.4a, we draw

the Pareto optimal surface obtained by our DP scheme, where the circles are Pareto optimal points.

Figure 4.4b plots the aggregate coding rate Ra g g as a function of MSE for different optimal numbers

of MP-AMP iterations T . Finally, Figure 4.4c plots the aggregate coding rate Ra g g as a function of T

for different optimal MSE’s. We can see that the surface comprised of the Pareto optimal points is

indeed convex. Note that when running DP to generate Figure 4.4, we used the RD function [CT06;

Ber71; GG93; WV12a] to model the relation between the rate Rt and distortion Dt at each iteration,

which could be approached by VQ at sufficiently high rates. We also ignored the constraint on the

quantization bin size (Section 4.2.2). Therefore, we only present Figure 4.4 for illustration purposes.

When a smaller MSE (or equivalently smaller EMSE) is desired, more iterations T and greater ag-

gregate coding rates Ra g g (4.14) are needed. Optimal coding rate sequences increase Ra g g to reduce

T when communication costs are low (examples are commercial cloud computing systems [Ec2],

multi-processor CPUs, and graphic processing units), whereas more iterations allow to reduce the

coding rate when communication is costly (for example, in sensor networks [PK00; Est02]). These

applications are discussed in Section 4.6.

Discussion of corner points: We further discuss the corners of the Pareto optimal surface (Fig-

ure 4.4) below.

1. First, consider the corner points along the MSE coordinate.

• If MSE∗→MMSE (or equivalently∆→ 0), then MP-AMP needs to run infinite iterations

with infinite coding rates. Hence, R ∗a g g →∞ and T ∗→∞. The rate of growth of R ∗a g g

can be deduced from Theorem 4.1.

• If MSE∗→ρ (the variance of the signal (4.18)), then MP-AMP does not need to run any iter-

ations at all. Instead, MP-AMP outputs an all-zero estimate. Therefore, limMSE∗→ρ R ∗a g g =

0 and limMSE∗→ρ T ∗ = 0.

2. Next, we discuss the corner points along the T coordinate.

• If T ∗ → 0, then the best MP-AMP can do is to output an all-zero estimate. Hence,

limT ∗→0 MSE∗ =ρ and limT ∗→0 R ∗a g g = 0.

• The other extreme, T ∗→∞, occurs only when we want to achieve an MSE∗→MMSE.

Hence, R ∗a g g →∞.
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3. We conclude with corner points along the Ra g g coordinate.

• If R ∗a g g → 0, then the best MP-AMP can do is to output an all-zero estimate without

running any iterations at all. Hence, limR ∗a g g→0 MSE∗ =ρ and limR ∗a g g→0 T ∗ = 0.

• If R ∗a g g →∞, then the optimal scheme will use high rates in all iterations, and MP-AMP

resembles centralized AMP. Therefore, the MSE∗ as a function of T ∗ converges to that of

centralized AMP SE (4.6).

4.6 Real-world Case Study

To showcase the difference between optimal coding rate sequences in different platforms, this

section discusses several MP platforms including sensor networks [PK00; Est02] and large-scale

cloud servers [Ec2]. The costs in these platforms are quite different due to the different constraints in

these platforms, and we will see how they affect the optimal coding rate sequence R∗. The changes

in the optimal R∗ highlight the importance of optimizing for the correct costs.

4.6.1 Sensor networks

In sensor networks [PK00; Est02], distributed sensors are typically dispatched to remote locations

where they collect data and communicate with the fusion center. However, distributed sensors may

have severe power consumption constraints. Therefore, low power chips such as the CC253X from

Texas Instruments [Cc2] are commonly used in distributed sensors. Some typical parameters for

such low power chips are: central processing unit (CPU) clock frequency 32MHz, data transmission

rate 250Kbps, voltage between 2V-3.6V, and transceiver current 25mA [Cc2], where the CPU current

resembles the transceiver current. Because these chips are generally designed to be low power, when

transmitting and receiving data, the CPU helps the transceiver and cannot carry out computing

tasks. Therefore, the power consumption can be viewed as constant. Hence, in order to minimize

the power consumption, we minimize the total runtime when estimating a signal from MP-LM

measurements (4.2) collected by the distributed sensors.

The runtime in each MP-AMP iteration (4.7)-(4.10) consists of (i) time for computing (4.7)

and (4.8), (ii) time for encoding fp
t (4.8), and (iii) data transmission time for Q (fp

t ) (4.9). As discussed

in Section 4.2.2, the fusion center may broadcast xt (4.10), and simple compression schemes can

reduce the coding rate. Therefore, we consider the data reception time in the P processor nodes to be

constant. The overall computational complexity for (4.7) and (4.8) is O (M N
P ). Suppose further that (i)

each processor node needs to carry out two matrix-vector products in each iteration, (ii) the overhead

of moving data in memory is assumed to be 10 times greater than the actual computation, and (iii)

the clock frequency is 32MHz. Hence, we assume that the actual time needed for computing (4.7)

and (4.8) is C4 =
20M N

32×106P sec. Transmitting Q (fp
t ) of length N at coding rate R requires R N

250×103 sec,
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where the denominator is the data transmission rate of the transceiver. Assuming that the overhead

in communication is approximately the same as the communication load caused by the actual

messages, we obtain that the time requested for transmitting Q (fp
t ) at coding rate R is C5R sec, where

C5 =
2N

250×103 . Therefore, the total cost can be calculated from (4.13) with b = C4
C5

(4.13).

Because low power chips equipped in distributed sensors have limited memory (around 10KB,

although sometimes external flash is allowed) [Cc2], the signal length N and number of measure-

ments M cannot be too large. We consider N = 1000 and M = 400 spread over P = 100 sensors,

sparsity rate ρ = 0.1, and σ2
Z =

1
400 . We set the desired MSE to be 0.5 dB above the MMSE, i.e.,

10log10

�

1+ ∆
MMSE

�

= 0.5, and run DP as in Section 4.3.7 The coding rate sequence provided by DP

is R∗ = (0.1, 0.1, 0.6, 0.8, 1.0, 1.0, 1.1, 1.1, 1.2, 1.4, 1.6, 1.9, 2.3, 2.7, 3.1). In total we have T = 15

MP-AMP iterations with Ra g g = 20.0 bits aggregate coding rate (4.14). The final MSE (MMSE+∆) is

7.047×10−4, which is 0.5 dB from the MMSE (6.281×10−4) [ZB13; Krz12a; Guo09; Ran12].

4.6.2 Large-scale cloud server

Having discussed sensor networks [PK00; Est02], we now discuss an application of DP (cf. Section 4.3)

to large-scale cloud servers. Consider the dollar cost for users of Amazon EC2 [Ec2], a commercial

cloud computing service. A typical cost for CPU time is $0.03/hour, and the data transmission cost is

$0.03/GB. Assuming that the CPU clock frequency is 2.0GHz and considering various overheads, we

need a runtime of 20M N
2×109P sec and the computation cost is C4 = $ 20M N

2×109P ×
0.03
3600 per MP-AMP iteration.

Similar to Section 4.6.1, the communication cost for coding rate R is C5R = $2R N 0.03
8×109 . Note that the

multiplicative factors of 20 in C4 and 2 in C5 are due to the same considerations as in Section 4.6.1,

and the 8×109 in C5 is the number of bits per GB. Therefore, the total cost with T MP-AMP iterations

can still be modeled as in (4.13), where b = C4
C5

.

We consider a problem with the same signal and channel model as the setting of Section 4.6.1,

while the size of the problem grows to N = 50000 and M = 20000 spread over P = 100 computing

nodes. Running DP, we obtain the coding rate sequence R∗ = (1.3, 1.6, 1.8, 1.8, 1.8, 1.9, 2.1, 2.3, 2.6,

3.1, 3.7) for a total of T = 11 MP-AMP iterations with Ra g g = 24.0 bits aggregate coding rate. The

final MSE is 7.031×10−4, which is 0.49 dB above the MMSE. Note that this final MSE is 0.01 dB better

than our goal of 0.5 dB above the MMSE due to the discretized search spaces used in DP.

Settings with even cheaper communication costs: Compared to large-scale cloud servers, the

relative cost of communication is even cheaper in multi-processor CPU and graphics processing

unit (GPU) systems. We reduce b by a factor of 100 compared to the large-scale cloud server case

above. We rerun DP, and obtain the coding rate sequence R∗ = (2.3, 2.5, 2.6, 2.7, 2.7, 2.8, 3.0, 3.4,

3.7, 4.5) for T = 10 and Ra g g = 30.2 bits. Note that 10 iterations are needed for centralized AMP to

7Throughout Section 4.6, we use the RD function [CT06; Ber71; GG93; WV12a] to model the relation between rate Rt

and distortion Dt at each iteration. We also ignore the constraint on the quantizer (Section 4.2.2). Therefore, the optimal
coding rate sequences in Section 4.6 are only for illustration purposes.
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converge in this setting. With the low-cost communication of this setting, DP yields a coding rate

sequence R∗ within 0.5 dB of the MMSE with the same number of iterations as centralized AMP,

while using an average coding rate of only 3.02 bits per iteration.

Remark 4.3. Let us review the cost tuples (T , Ra g g , MSE) for our three cases. For sensor networks,

(T , Ra g g , MSE)sensornet = (15,20,7.047× 10−4); for cloud servers, (T , Ra g g , MSE)cloud = (11,24,7.031×
10−4); and for GPUs, (T , Ra g g , MSE)GPU = (10, 30.2, 7.047×10−4). These cost tuples are different points

in the Pareto optimal set P (4.29). We can see for sensor networks that the optimal coding rate

sequence reduces Ra g g while adding iterations, because sensor networks have relatively expensive

communications. The optimal coding rate sequences use higher rates in cloud servers and GPUs,

because their communication costs are relatively lower. Indeed, different trade-offs between compu-

tation and communication lead to different aggregate coding rates Ra g g and numbers of MP-AMP

iterations T . Moreover, the optimal coding rate sequences for sensor networks, cloud servers, and

GPUs use average coding rates of 1.33, 2.18, and 3.02 bits/entry/iteration, respectively. Compared to

32 bits/entry/iteration single-precision floating point communication schemes, optimal coding rate

sequences reduce the communication costs significantly.

4.7 Conclusion

This chapter used lossy compression in multi-processor (MP) approximate message passing (AMP)

for solving MP linear inverse problems. Dynamic programming (DP) was used to obtain the optimal

coding rate sequence for MP-AMP that incurs the lowest combined cost of communication and

computation while achieving a desired mean squared error (MSE). We posed the problem of finding

the optimal coding rate sequence in the low excess MSE (EMSE=MSE-MMSE, where MMSE refers

to the minimum MSE) limit as a convex optimization problem and proved that optimal coding rate

sequences are approximately linear when the EMSE is small. Additionally, we obtained that the

combined cost of computation and communication scales with O (log2(1/EMSE)). Furthermore,

realizing that there is a trade-off among the communication cost, computation cost, and MSE, we

formulated a multi-objective optimization problem (MOP) for these costs and studied the Pareto

optimal points that exploit this trade-off. We proved that the achievable region of the MOP is convex.

We further emphasize that there is little work in the prior art discussing the optimization of

communication schemes in iterative distributed algorithms. Although we focused on the MP-AMP

algorithm, our conclusions such as the linearity of the optimal coding rate sequence and the con-

vexity of the achievable set of communication/computation trade-offs could be extended to other

iterative distributed algorithms including consensus averaging [Fra08; Tha13].
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CHAPTER

5

UNIVERSAL ALGORITHM

Previous chapters discussed the information theoretic performance limits for multi-measurement

vector problems (1.3) and also studied the optimal trade-offs among different costs in multi-

processor linear models (1.2). When the number of rows M is smaller than the number of columns

N in the measurement matrix A, we call the corresponding linear model a compressed sensing (CS)

problem. In this chapter, we study the CS signal estimation problem. While CS usually assumes

sparsity or compressibility in the input signal during estimation, the signal structure that can be

leveraged is often not known a priori. In this chapter, we consider universal CS signal estimation,

where the statistics of a stationary ergodic signal source are estimated simultaneously with the

signal itself. Inspired by Kolmogorov complexity and minimum description length, we focus on a

maximum a posteriori (MAP) estimation framework that leverages universal priors to match the

complexity of the source. Our framework can also be applied to general linear inverse problems

where more measurements than the signal length might be needed. We provide theoretical results

that support the algorithmic feasibility of universal MAP estimation using a Markov chain Monte

Carlo implementation (an algorithmic framework mimicking the annealing process in statistical

physics, cf. Section 2.1), which is computationally challenging. We incorporate some techniques to

accelerate the algorithm while providing comparable and in many cases better estimation quality

than existing algorithms. Experimental results show the promise of universality in CS, particularly

for low-complexity sources that do not exhibit standard sparsity or compressibility. This chapter is

based on our work with Baron and Duarte [Zhu14; Zhu15].
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5.1 Motivation and Contributions

Since many systems in science and engineering are approximately linear (1.1), linear inverse prob-

lems have attracted great attention in the signal processing community. Recall from (1.1) that an

input signal x ∈RN is recorded via a linear operator under additive noise:

y=Ax+ z, (5.1)

where A is an M ×N matrix and z ∈ RM denotes the noise. The goal is to estimate x from the

measurements y given knowledge of A and a model for the noise z. When M � N , the setup is

known as compressed sensing (CS) and the estimation problem is commonly referred to as recovery

or reconstruction; by posing a sparsity or compressibility1 requirement on the signal and using

this requirement as a prior during estimation, it is indeed possible to accurately estimate x from

y [Can06; Don06a]. On the other hand, we might need more measurements than the signal length

when the signal is dense or the noise is substantial.

Wu and Verdú [WV12b] have shown that independent and identically distributed (i.i.d.) Gaussian

sensing matrices achieve the same phase transition threshold as the optimal (potentially non-linear)

measurement operator, for any i.i.d. signals following the discrete/continuous mixture distribution

fX (x ) = ρ · fc (x ) + (1−ρ) · Pd (x ), where ρ is the probability for a scalar x to take a continuous

distribution fc (x ) and Pd (x ) is an arbitrary discrete distribution. For non-i.i.d. signals, Gaussian

matrices also work well [Don13; Tan15; Ma14a]. Hence, in CS the acquisition can be designed

independently of the particular signal prior through the use of randomized Gaussian matrices A.

Nevertheless, the majority of (if not all) existing estimation algorithms require knowledge of the

sparsity structure of x, i.e., the choice of a sparsifying transform W that renders a sparse coefficient

vector θ =W−1x for the signal.

The large majority of CS signal estimation algorithms pose a sparsity prior on the signal x or

the coefficient vector θ , e.g., [Can06; Don06a; Fig07]. A second, separate class of Bayesian CS signal

estimation algorithms poses a probabilistic prior for the coefficients of x in a known transform do-

main [Don10; Ran11; Ji08; SN08; Bar10]. Given a probabilistic model, some related message passing

approaches learn the parameters of the signal model and achieve the minimum mean squared

error (MMSE) in some settings; examples include EM-GM-AMP-MOS [VS13], turboGAMP [Zin12],

and AMP-MixD [Ma14b]. As a third alternative, complexity-penalized least square methods [FN03;

Don06b; HN06; HN12; RS12a] can use arbitrary prior information on the signal model and provide

analytical guarantees, but are only computationally efficient for specific signal models, such as

the independent-entry Laplacian model [HN06]. For example, Donoho et al. [Don06b] relies on

1We use the term compressibility in this chapter as defined by Candès et al. [Can06] to refer to signals whose sparse
approximation error decays sufficiently quickly.
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Kolmogorov complexity, which cannot be computed [CT06; LV08]. As a fourth alternative, there exist

algorithms that can formulate dictionaries that yield sparse representations for the signals of interest

when a large amount of training data is available [RS12a; Aha06; Mai08; Zho12]. When the signal is

non-i.i.d., existing algorithms require either prior knowledge of the probabilistic model [Zin12] or

the use of training data [GO07].

In certain cases, one might not be certain about the structure or statistics of the source prior to

estimation. Uncertainty about such structure may result in a sub-optimal choice of the sparsifying

transform W, yielding a coefficient vector θ that requires more measurements to achieve reasonable

estimation quality; uncertainty about the statistics of the source will make it difficult to select a prior

or model for Bayesian algorithms. Thus, it would be desirable to formulate algorithms to estimate x

that are more agnostic to the particular statistics of the signal. Therefore, we shift our focus from the

standard sparsity or compressibility priors to universal priors [ZL77; Ris83; RS12b]. Such concepts

have been previously leveraged in the Kolmogorov sampler universal denoising algorithm [Don02],

which minimizes Kolmogorov complexity [Cha66; Sol64; Kol65; LV08; JM11; Jal14; Bar11; BD11].

Related approaches based on minimum description length (MDL) [Ris78; Sch78; WB68; Bar98]

minimize the complexity of the estimated signal with respect to (w.r.t.) some class of sources.

Approaches for non-parametric sources based on Kolmogorov complexity are not computable

in practice [CT06; LV08]. To address this computational problem, we confine our attention to the

class of stationary ergodic sources and develop an algorithmic framework for universal signal

estimation in CS systems that will approach the MMSE as closely as possible for the class of stationary

ergodic sources. Our framework can be applied to general linear inverse problems where more

measurements might be needed. Our framework leverages the fact that for stationary ergodic sources,

both the per-symbol empirical entropy and Kolmogorov complexity converge asymptotically almost

surely to the entropy rate of the source [CT06]. We aim to minimize the empirical entropy; our

minimization is regularized by introducing a log likelihood for the noise model, which is equivalent

to the standard least squares under additive white Gaussian noise. Other noise distributions are

readily supported.

We make the following contributions toward our universal CS framework.

• We apply a specific quantization grid to a maximum a posteriori (MAP) estimator driven by

a universal prior, providing a finite-computation universal estimation scheme; our scheme

can also be applied to general linear inverse problems where more measurements might be

needed.

• We propose an estimation algorithm based on Markov chain Monte Carlo (MCMC) [GG84] to

approximate this estimation procedure.

• We prove that for a sufficiently large number of iterations the output of our MCMC estimation

algorithm converges to the correct MAP estimate.
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• We identify computational bottlenecks in the implementation of our MCMC estimator and

show approaches to reduce their complexity.

• We develop an adaptive quantization scheme that tailors a set of reproduction levels to

minimize the quantization error within the MCMC iterations and that provides an accelerated

implementation.

• We propose a framework that adaptively adjusts the cardinality (size) of the adaptive quantizer

to match the complexity of the input signal, in order to further reduce the quantization error

and computation.

• We note in passing that averaging over the outputs of different runs of the same signal with the

same measurements will yield lower mean squared error (MSE) for our proposed algorithm.

This chapter is organized as follows. Section 5.2 provides background content. Section 5.3

overviews MAP estimation, quantization, and introduces universal MAP estimation. Section 5.4

formulates an initial MCMC algorithm for universal MAP estimation, Section 5.5 describes several

improvements to this initial algorithm, and Section 5.6 presents experimental results. We conclude

in Section 5.8. The proof of our main theoretical result appears in Appendix C.

5.2 Background and Related Work

5.2.1 Compressed sensing

Consider the noisy measurement setup via a linear operator (5.1). The input signal x ∈ RN is

generated by a stationary ergodic source X , and must be estimated from y and A. Note that the

stationary ergodicity assumption enables us to model the potential memory in the source. The

distribution fX (·) that generates x is unknown. The matrix A ∈ RM×N has i.i.d. Gaussian entries,

Am ,n ∼N (0, 1
M ).

2 These moments ensure that the columns of the matrix have unit norm on average.

For concrete analysis, we assume that the noise z ∈RM is i.i.d. Gaussian, with mean zero and known3

varianceσ2
Z for simplicity.

We focus on the large system limit (cf. Definition 1.1 in Chapter 1). Similar settings have been

discussed in the literature [Ran10; GW08]. When M �N , this setup is known as CS; otherwise, it is a

general linear inverse problem setting. Since x is generated by an unknown source, we must search

for an estimation mechanism that is agnostic to the specific distribution fX (·).
2In contrast to our analytical and numerical results, the algorithm presented in Section 5.4 is not dependent on a

particular choice for the matrix A.
3We assume that the noise variance is known or can be estimated [Don10; Ma14b].

59



5.2.2 Related work

For a scalar channel with a discrete-valued signal x, e.g., A is an identity matrix and y= x+z, Donoho

proposed the Kolmogorov sampler for denoising [Don02],

xK S ¬ arg min
w

K (w), subject to ‖w−y‖2 <τ, (5.2)

where K (x) denotes the Kolmogorov complexity of x, defined as the length of the shortest input

to a Turing machine [Tur50] that generates the output x and then halts,4 and τ = Nσ2
Z controls

for the presence of noise. It can be shown that K (x) asymptotically captures the statistics of the

stationary ergodic source X , and the per-symbol complexity achieves the entropy rate H ¬H (X ),

i.e., limN→∞
1
N K (x) =H almost surely [[CT06], p. 154, Theorem 7.3.1]. Noting that universal lossless

compression algorithms [ZL77; Ris83] achieve the entropy rate for any discrete-valued finite state

machine source X , we see that these algorithms achieve the per-symbol Kolmogorov complexity

almost surely.

Donoho et al. expanded Kolmogorov sampler to the linear CS measurement setting y = Ax

but did not consider measurement noise [Don06b]. Recent papers by Jalali and coauthors [JM11;

Jal14], which appeared simultaneously with Baron [Bar11] and Baron and Duarte [BD11], provide

an analysis of a modified Kolmogorov sampler suitable for measurements corrupted by noise of

bounded magnitude. Inspired by Donoho et al. [Don06b], we estimate x from noisy measurements

y using the empirical entropy as a proxy for the Kolmogorov complexity (cf. Section 5.4.1).

Separate notions of complexity-penalized least squares have also been shown to be well suited

for denoising and CS signal estimation [FN03; Don06b; Ris78; Sch78; WB68; HN06; HN12; RS12a].

For example, minimum description length (MDL) [Ris78; Sch78; WB68; RS12a] provides a frame-

work composed of classes of models for which the signal complexity can be defined sharply. In

general, complexity-penalized least square approaches can yield MDL-flavored CS signal estimation

algorithms that are adaptive to parametric classes of sources [Don06b; FN03; HN06; HN12]. An

alternative universal denoising approach computes the universal conditional expectation of the

signal [Bar11; Ma14b].

5.3 Universal MAP Estimation and Discretization

This section briefly reviews MAP estimation and then applies it over a quantization grid, where a

universal prior is used for the signal. Additionally, we provide a conjecture for the MSE achieved by

our universal MAP scheme.

4For real-valued x, Kolmogorov complexity can be approximated using a fine quantizer. Note that the algorithm
developed in this chapter uses a coarse quantizer and does not rely on Kolmogorov complexity due to the absence of a
feasible method for its computation [CT06; LV08] (cf. Section 5.5).
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5.3.1 Discrete MAP estimation

In this subsection, we assume for exposition purposes that we know the signal distribution fX (·).
Given the measurements y, the MAP estimator for x has the form

xM AP ¬ arg max
w

fX (w) fY |X (y|w). (5.3)

Because z is i.i.d. Gaussian with mean zero and known varianceσ2
Z ,

fY |X (y|w) = c1 e−c2‖y−Aw‖2
,

where c1 = (2πσ2
Z )
−M /2 and c2 =

1
2σ2

Z
are constants, and ‖ · ‖ denotes the Euclidean norm.5 Plugging

into (5.3) and taking log likelihoods, we obtain xM AP = arg min
w
ΨX (w), where ΨX (·) denotes the

objective function (risk)

ΨX (w)¬− ln( fX (w))+ c2‖y−Aw‖2;

our ideal risk would be ΨX (xM AP ).

Instead of performing continuous-valued MAP estimation, we optimize for the MAP in the

discretized domain RN , with R being defined as follows. Adapting the approach of Baron and

Weissman [BW12], we define the set of data-independent reproduction levels for quantizing x as

R ¬
§

· · · ,−
1

γ
, 0,

1

γ
, · · ·

ª

, (5.4)

where γ = dln(N )e. As N increases,R will quantize x to a greater resolution. These reproduction

levels simplify the estimation problem from continuous to discrete.

Having discussed our reproduction levels in the set R , we provide a technical condition on

boundedness of the signal.

Condition 5.1. We require that the probability density fX (·) has bounded support, i.e., there exists

Λ= [xmin, xmax] such that (s.t.) fX (x) = 0 for x /∈ΛN .

A limitation of the data-independent reproduction level set (5.4) is thatR has infinite cardinality

(or size for short). Thanks to Condition 5.1, for each value of γ there exists a constant c3 > 0 s.t. a

finite set of reproduction levels

RF ¬
�

−
c3γ

2

γ
,−

c3γ
2−1

γ
, · · · ,

c3γ
2

γ

�

(5.5)

will quantize the range of values Λ to the same accuracy as that of (5.4). We call RF the repro-

5Other noise distributions are readily supported, e.g., for i.i.d. Laplacian noise, we need to change the `2 norm to an `1

norm and adjust c1 and c2 accordingly.
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duction alphabet, and each element in it a (reproduction) level. This finite quantizer reduces the

complexity of the estimation problem from infinite to combinatorial. In fact, xi ∈ [xmin, xmax] under

Condition 5.1. Therefore, for all c3 > 0 and sufficiently large N , this set of levels will cover the range

[xmin, xmax]. The resulting reduction in complexity is due to the structure inRF and independent of

the particular statistics of the source X .

Now that we have set up a quantization grid (RF )N for x, we convert the distribution fX (·) to a

probability mass function (PMF) PX (·) over (RF )N . Let fRF
¬

∑

w∈(RF )N
fX (w), and define a PMF PX (·)

as PX (w)¬
fX (w)
fRF

. Then,

xM AP (RF )¬ arg min
w∈(RF )N

�

− ln(PX (w))+ c2‖y−Aw‖2
�

gives the MAP estimate of x over (RF )N . Note that we use the PMF formulation above, instead of

the more common bin integration formulation, in order to simplify our presentation and analysis.

Luckily, as N increases, PX (·)will approximate fX (·)more closely under (5.5).

5.3.2 Universal MAP estimation

We now describe a universal estimator for CS over a quantized grid. Consider a prior PU (·) that might

involve Kolmogorov complexity [Cha66; Sol64; Kol65], e.g., PU (w) = 2−K (w), or MDL complexity w.r.t.

some class of parametric sources [Ris78; Sch78; WB68]. We call PU (·) a universal prior if it has the

fortuitous property that for every stationary ergodic source X and fixed ε > 0, there exists some

minimum N0(X ,ε) s.t.

−
ln(PU (w))

N
<−

ln(PX (w))
N

+ε

for all w ∈ (RF )N and N > N0(X ,ε) [ZL77; Ris83]. We optimize over an objective function that

incorporates PU (·) and the presence of additive white Gaussian noise in the measurements:

ΨU (w)¬− ln(PU (w))+ c2‖y−Aw‖2, (5.6)

resulting in6 xU
M AP ¬ arg min

w∈(RF )N
ΨU (w). Our universal MAP estimator does not require M �N , and

xU
M AP can be used in general linear inverse problems.

5.3.3 Conjectured MSE performance

Donoho [Don02] showed for the scalar channel y= x+ z that: (i ) the Kolmogorov sampler xK S (5.2)

is drawn from the posterior distribution PX |Y (x|y); and (i i ) the MSE of this estimate EX ,Z ,A[‖y−

6This formulation of xU
M AP corresponds to a Lagrangian relaxation of the approach studied in [JM11; Jal14].
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xK S‖2] is no greater than twice the MMSE. Based on this result, which requires a large reproduction

alphabet, we now present a conjecture on the quality of the estimate xU
M AP . Our conjecture is based

on observing that (i) in the setting (5.1), Kolmogorov sampling achieves optimal rate-distortion

performance; (ii) the Bayesian posterior distribution is the solution to the rate-distortion problem;

and (iii) sampling from the Bayesian posterior yields a squared error that is no greater than twice the

MMSE. Hence, xU
M AP behaves as if we sample from the Bayesian posterior distribution and yields

no greater than twice the MMSE; some experimental evidence to assess this conjecture is presented

in Figures 5.2 and 5.4.

Conjecture 5.1. Assume that A ∈RM×N is an i.i.d. Gaussian measurement matrix where each entry

has mean zero and variance 1
M . Suppose that Condition 5.1 holds, the aspect ratio κ= M

N , and the

noise z ∈RM is i.i.d. zero-mean Gaussian with finite variance. Then for all ε> 0, the mean squared

error of the universal MAP estimator xU
M AP satisfies

EX ,Z ,A

�

‖x−xU
M AP ‖

2
�

N
<

2EX ,Z ,A

�

‖x−EX [x|y, A]‖2
�

N
+ε

for sufficiently large N .

5.4 Fixed Reproduction Alphabet Algorithm

Although the results of the previous section are theoretically appealing, a brute force optimization of

xU
M AP is computationally intractable. Instead, we propose an algorithmic approach based on MCMC

methods [GG84]. Our approach is reminiscent of the framework for lossy data compression [JW08;

JW12; BW12; Yan97].

5.4.1 Universal compressor

We propose a universal lossless compression formulation following the conventions of Weissman

and coauthors [JW08; JW12; BW12]. We refer to the estimate as w in our algorithm. Our goal is to char-

acterize− ln(PU (w)), cf. (5.6). Although we are inspired by the Kolmogorov sampler approach [Don02],

Kolmogorov complexity cannot be computed [CT06; LV08], and we instead use empirical entropy.

For stationary ergodic sources, the empirical entropy converges to the per-symbol entropy rate

almost surely [CT06].

To define the empirical entropy, we first define the empirical symbol counts:

nq (w,α)[β ]¬
�

�

�{i ∈ [q +1, N ] : wi−1
i−q =α, wi =β}

�

�

� , (5.7)

where q is the context depth [Ris83; Wil95], β ∈ RF , α ∈ (RF )q , wi is the i -th symbol of w, and

w j
i is the string comprising symbols i through j within w. We now define the order q conditional
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empirical probability for the context α as

Pq (w,α)[β ]¬
nq (w,α)[β ]

∑

β ′∈RF
nq (w,α)[β ′]

, (5.8)

and the order q conditional empirical entropy,7

Hq (w)¬−
1

N

∑

α∈(RF )q ,β∈RF

nq (w,α)[β ] log2

�

Pq (w,α)[β ]
�

, (5.9)

where the sum is only over non-zero counts and probabilities.

Allowing the context depth q ¬ qN = o (log(N )) to grow slowly with N , various universal com-

pression algorithms can achieve the empirical entropy Hq (·) asymptotically [Ris83; Wil95; ZL77].

On the other hand, no compressor can outperform the entropy rate. Additionally, for large N , the

empirical symbol counts with context depth q provide a sufficiently precise characterization of the

source statistics. Therefore, Hq provides a concise approximation to the per-symbol coding length

of a universal compressor.

5.4.2 Markov chain Monte Carlo

Having approximated the coding length, we now describe how to optimize our objective function.

We define the energy ΨHq (w) in an analogous manner to ΨU (w) (5.6), using Hq (w) as our universal

coding length:

ΨHq (w)¬N Hq (w) + c4‖y−Aw‖2, (5.10)

where c4 = c2 log2(e). The minimization of this energy is analogous to minimizing ΨU (w).

Ideally, our goal is to compute the globally minimum energy solution x
Hq

M AP ¬ arg min
w∈(RF )N

ΨHq (w).

We use a stochastic MCMC relaxation [GG84] to achieve the globally minimum solution in the

limit of infinite computation. To assist the reader in appreciating how MCMC is used to compute

x
Hq

M AP , we include pseudocode for our approach in Algorithm 5.1. The algorithm, called basic MCMC

(B-MCMC), will be used as a building block for our latter Algorithms 5.2 and 4 in Section 5.5. The

initial estimate w is obtained by quantizing the initial point x∗ ∈RN to (RF )N . The initial point x∗

could be the output of any CS signal estimation algorithm, and because x∗ is a preliminary estimate

of the signal that does not require high fidelity, we let x∗ = A>y for simplicity, where {·}> denotes

transpose. We refer to the processing of a single entry of w as an iteration and group the processing

of all entries of w, randomly permuted, into super-iterations.

The Boltzmann PMF for a thermodynamic system was defined in (2.2). Similarly, we define the

7Interested readers can refer to the definitions of entropy for thermodynamics and information theory in (2.1) and (2.8),
respectively.
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Boltzmann PMF for the energy ΨHq (w) (5.10) as

Ps (w)¬
1

ζs
exp

�

−sΨHq (w)
�

, (5.11)

where s > 0 is inversely related to the temperature in simulated annealing and ζs is a normalization

constant. MCMC samples from the Boltzmann PMF (5.11) using a Gibbs sampler: in each iteration,

a single element wn is generated while the rest of w, w\n ¬ {wi : n 6= i }, remains unchanged. We

denote by wn−1
1 βwN

n+1 the concatenation of the initial portion of the output vector wn−1
1 , the symbol

β ∈RF , and the latter portion of the output wN
n+1. The Gibbs sampler updates wn by resampling

from the PMF:

Ps (wn = a |w\n ) =
exp

�

−sΨHq (wn−1
1 a wN

n+1)
�

∑

b∈RF
exp

�

−sΨHq (wn−1
1 b wN

n+1)
�

=
1

∑

b∈RF
exp

�

−s
�

N∆Hq (w, n , b , a ) + c4∆d (w, n , b , a )
�� ,

where

∆Hq (w, n , b , a )¬Hq (w
n−1
1 b wN

n+1)−Hq (w
n−1
1 a wN

n+1)

is the change in empirical entropy Hq (w) (5.9) when wn = a is replaced by b , and

∆d (w, n , b , a )¬ ‖y−A(wn−1
1 b wN

n+1)‖
2−‖y−A(wn−1

1 a wN
n+1)‖

2 (5.12)

is the change in ‖y−Aw‖2 when wn = a is replaced by b . The maximum change in the energy within

an iteration of Algorithm 5.1 is then bounded by

∆q = max
1≤n≤N

max
w∈(RF )N

max
a ,b∈RF

�

�N∆Hq (w, n , b , a ) + c4∆d (w, n , b , a )
�

� . (5.13)

Note that x is assumed bounded (cf. Condition 5.1) so that (5.12–5.13) are bounded as well.

In MCMC, the space w ∈ (RF )N is analogous to a thermodynamic system, and at low tempera-

tures the system tends toward low energies. Therefore, during the execution of the algorithm, we set

a sequence of decreasing temperatures that takes into account the maximum change given in (5.13):

st ¬ ln(t + r0)/(c N∆q ) for some c > 1, (5.14)

where r0 is a temperature offset. At low temperatures, i.e., large st , a small difference in energy

ΨHq (w) drives a big difference in probability, cf. (5.11). Therefore, we begin at a high temperature

where the Gibbs sampler can freely move around (RF )N . As the temperature is reduced, the PMF
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Algorithm 5.1 Basic MCMC for universal CS – Fixed alphabet

1: Inputs: Initial estimate w, reproduction alphabet RF , noise variance σ2
Z , number of super-

iterations r , temperature constant c > 1, and context depth q
2: Compute nq (w,α)[β ], ∀ α ∈ (RF )q , β ∈RF

3: for t = 1 to r do . super-iteration
4: s ← ln(t )/(c N∆q ) . s = st , cf. (5.14)
5: Draw permutation {1, · · · , N } at random
6: for t ′ = 1 to N do . iteration
7: Let n be component t ′ in permutation
8: for all β inRF do . possible new wn

9: Compute∆Hq (w, n ,β , wn )
10: Compute∆d (w, n ,β , wn )
11: Compute Ps (wn =β |w\n )
12: end for
13: Generate wn using Ps (·|w\n ) . Gibbs
14: Update nq (w,α)[β ], ∀ α ∈ (RF )q , β ∈RF

15: end for
16: end for
17: Output: Return approximation w of xU

M AP

becomes more sensitive to changes in energy (5.11), and the trend toward w with lower energy grows

stronger. In each iteration, the Gibbs sampler modifies wn in a random manner that resembles heat

bath concepts in thermodynamics. Although MCMC could sink into a local minimum, Geman and

Geman [GG84] proved that if we decrease the temperature according to (5.14), then the randomness

of Gibbs sampling will eventually drive MCMC out of the locally minimum energy and it will converge

to the globally optimal energy w.r.t. xU
M AP . Note that Geman and Geman proved that MCMC will

converge, although the proof states that it will take infinitely long to do so. In order to help B-MCMC

approach the global minimum with reasonable runtime, we will refine B-MCMC in Section 5.5.

The following theorem is proven in Appendix C.1, following the framework established by Jalali

and Weissman [JW08; JW12].

Theorem 5.1. Let X be a stationary ergodic source that obeys Condition 5.1. Then the outcome wr of

Algorithm 5.1 in the limit of an infinite number of super-iterations r obeys

lim
r→∞

ΨHq (wr ) = min
ew∈(RF )N

ΨHq (ew) =ΨHq
�

x
Hq

M AP

�

.

Theorem 5.1 shows that Algorithm 5.1 matches the best-possible performance of the universal

MAP estimator as measured by the objective function ΨHq , which should yield an MSE that is twice

the MMSE (cf. Conjecture 5.1). We want to remind the reader that Theorem 5.1 is based on the
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stationarity and ergodicity of the source, which could have memory. To gain some insight about

the convergence process of MCMC, we focus on a fixed arbitrary sub-optimal sequence w ∈ (RF )N .

Suppose that at super-iteration t the energy for the algorithm’s output ΨHq (w) has converged to the

steady state (see Appendix C.1 for details on convergence). We can then focus on the probability ratio

ρt =Pst
(w)/Pst

�

x
Hq

M AP

�

; ρt < 1 because x
Hq

M AP is the global minimum and has the largest Boltzmann

probability over all w ∈ (RF )N , whereas w is sub-optimal. We then consider the same sequence w at

super-iteration t 2; the inverse temperature is 2st and the corresponding ratio at super-iteration t 2

is (cf. (5.11))

P2st
(w)

P2st

�

x
Hq

M AP

� =
exp

�

−2stΨ
Hq (w)

�

exp
�

−2stΨ
Hq

�

x
Hq

M AP

�� =





Pst
(w)

Pst

�

x
Hq

M AP

�





2

.

That is, between super-iterations t and t 2 the probability ratio ρt is also squared, and the Gibbs

sampler is less likely to generate samples whose energy differs significantly from the minimum

energy w.r.t. x
Hq

M AP . We infer from this argument that the probability concentration of our algorithm

around the globally optimal energy w.r.t. x
Hq

M AP is linear in the number of super-iterations.

5.4.3 Computational challenges

Studying the pseudocode of Algorithm 5.1, we recognize that Lines 9–11 must be implemented

efficiently, as they run r N |RF | times. Lines 9 and 10 are especially challenging.

For Line 9, a naive update of Hq (w) has complexity O (|RF |q+1), cf. (5.9). To address this problem,

Jalali and Weissman [JW08; JW12] recompute the empirical conditional entropy in O (q |RF |) time

only for the O (q ) contexts whose corresponding counts are modified [JW08; JW12]. The same

approach can be used in Line 14, again reducing computation from O (|RF |q+1) to O (q |RF |). Some

straightforward algebra allows us to convert Line 10 to a form that requires aggregate runtime of

O (N r (M + |RF |)). Combined with the computation for Line 9, and since M � q |RF |2 (because

|RF |= γ2,γ= dln(N )e, q = o (log(N )), and M =O (N )) in practice, the entire runtime of our algorithm

is O (r M N ).

The practical value of Algorithm 5.1 may be reduced due to its high computational cost, dictated

by the number of super-iterations r required for convergence to x
Hq

M AP and the large size of the

reproduction alphabet. Nonetheless, Algorithm 5.1 provides a starting point toward further perfor-

mance gains of more practical algorithms for computing x
Hq

M AP , which are presented in Section 5.5.

Furthermore, our experiments in Section 5.6 will show that the performance of the algorithm of

Section 5.5 is comparable to and in many cases better than existing algorithms.
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5.5 Adaptive Reproduction Alphabet

While Algorithm 5.1 is a first step toward universal signal estimation in CS, N must be large enough

to ensure thatRF quantizes a broad enough range of values of R finely enough to represent the

estimate x
Hq

M AP well. For large N , the estimation performance using the reproduction alphabet (5.5)

could suffer from high computational complexity. On the other hand, for small N the number of

reproduction levels employed is insufficient to obtain acceptable performance. Nevertheless, using

an excessive number of levels will slow down the convergence. Therefore, in this section, we explore

techniques that tailor the reproduction alphabet adaptively to the signal being observed.

5.5.1 Adaptivity in reproduction levels

To estimate better with finite N , we utilize reproduction levels that are adaptive instead of the fixed

levels inRF . To do so, instead of w ∈ (RF )N , we optimize over a sequence u ∈ZN , where |Z |< |RF |
and | · | denotes the size. The new reproduction alphabet Z does not directly correspond to real

numbers. Instead, there is an adaptive mappingA :Z →R, and the reproduction levels areA (Z ).
Therefore, we callZ the adaptive reproduction alphabet. Since the mappingA is one-to-one, we

also refer to Z as reproduction levels. Considering the energy function (5.10), we now compute

the empirical symbol counts nq (u,α)[β ], order q conditional empirical probabilities Pq (u,α)[β ],

and order q conditional empirical entropy Hq (u) using u ∈ZN , α ∈Z q , and β ∈Z , cf. (5.7), (5.8),

and (5.9). Similarly, we use ‖y−AA (u)‖2 instead of ‖y−Aw‖2, whereA (u) is the straightforward

vector extension ofA . These modifications yield an adaptive energy function Ψ
Hq
a (u)¬N Hq (u)+

c4‖y−AA (u)‖2.

We chooseAo p t to optimize for minimum squared error,

Ao p t ¬ arg min
A
‖y−AA (u)‖2 = arg min

A

�

M
∑

m=1

(ym − [AA (u)]m )2
�

,

where [AA (u)]m denotes the m-th entry of the vector AA (u). The optimal mapping depends en-

tirely on y, A, and u. From a coding perspective, describingAo p t (u) requires Hq (u) bits for u and

|Z |b log log(N ) bits forAo p t to match the resolution of the non-adaptiveRF , with b > 1 an arbitrary

constant [BW12]. The resulting coding length defines our universal prior.

Optimization of reproduction levels: We now describe the optimization procedure forAo p t ,

which must be computationally efficient. Write

Υ (A )¬ ‖y−AA (u)‖2 =
M
∑

m=1

�

ym −
N
∑

n=1

AmnA (un )

�2

,

where Amn is the entry of A at the m-th row, n-th column. For Υ (A ) to be minimum, we need
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zero-valued derivatives as follows,

dΥ (A )
dA (β )

=−2
M
∑

m=1

�

ym −
N
∑

n=1

AmnA (un )

��

N
∑

n=1

Amn1un=β

�

= 0, ∀ β ∈Z ,

where the indicator function 1A is 1 if the condition A is met, else 0. Define the location sets

Lβ ¬ {n : 1≤ n ≤N , un =β} for each β ∈Z , and rewrite the derivatives of Υ (A ),

dΥ (A )
dA (β )

=−2
M
∑

m=1

 

ym −
∑

λ∈Z

∑

n∈Lλ

AmnA (λ)

! 

∑

n∈Lβ

Amn

!

. (5.15)

Let the per-character sum column values be

µmβ ¬
∑

n∈Lβ

Amn , (5.16)

for each m ∈ {1, · · · , M } and β ∈Z . We desire the derivatives to be zero, cf. (5.15):

0=
M
∑

m=1

�

ym −
∑

λ∈Z
A (λ)µmλ

�

µmβ .

Thus, the system of equations must be satisfied,

M
∑

m=1

ymµmβ =
M
∑

m=1

�

∑

λ∈Z
A (λ)µmλ

�

µmβ (5.17)

for each β ∈Z . Consider now the right hand side,

M
∑

m=1

�

∑

λ∈Z
A (λ)µmλ

�

µmβ =
∑

λ∈Z
A (λ)

M
∑

m=1

µmλµmβ ,

for each β ∈Z . The system of equations can be described in matrix form as follows,

Ω
︷ ︸︸ ︷







∑M
m=1µmβ1

µmβ1
· · ·

∑M
m=1µmβ|Z |µmβ1

...
...

...
∑M

m=1µmβ1
µmβ|Z | · · ·

∑M
m=1µmβ|Z |µmβ|Z |







A (Z )
︷ ︸︸ ︷







A (β1)
...

A (β|Z |)






=

Θ
︷ ︸︸ ︷







∑M
m=1 ymµmβ1

...
∑M

m=1 ymµmβ|Z |






.

Note that by writing µ as a matrix with entries indexed by row m and column β given by (5.16), we

can write Ω as a Gram matrix, Ω = µ>µ, and we also have Θ = µ>y, cf. (5.17). The optimalA can

be computed as a |Z |×1 vectorAo p t =Ω
−1Θ = (µ>µ)−1µ>y if Ω ∈R|Z |×|Z | is invertible. We note in
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Algorithm 5.2 Level-adaptive MCMC

1: *Inputs: Initial mappingA , sequence u, adaptive alphabetZ , noise varianceσ2
Z , number of

super-iterations r , temperature constant c > 1, context depth q , and temperature offset r0

2: Compute nq (u,α)[β ], ∀ α ∈Z q , β ∈Z
3: *Initialize Ω
4: for t = 1 to r do . super-iteration
5: s ← ln(t + r0)/(c N∆q ) . s = st , cf. (5.14)
6: Draw permutation {1, · · · , N } at random
7: for t ′ = 1 to N do . iteration
8: Let n be component t ′ in permutation
9: for all β inZ do . possible new un

10: Compute∆Hq (u, n ,β , un )
11: *Compute µmβ ,∀m ∈ {1, · · · , M }
12: *Update Ω . O (1) rows and columns
13: *ComputeAo p t . invert Ω
14: Compute ‖y−AA (un−1

1 βuN
n+1)‖

2

15: Compute Ps (un =β |u\n )
16: end for
17: *eun ← un . save previous value
18: Generate un using Ps (·|u\n ) . Gibbs
19: Update nq (·)[·] at O (q ) relevant locations
20: *Update µmβ , ∀m , β ∈ {un , eun}
21: *Update Ω . O (1) rows and columns
22: end for
23: end for
24: *Outputs: Return approximationA (u) of xU

M AP , Z , and temperature offset r0+ r

passing that numerical stability can be improved by regularizing Ω. Note also that

‖y−AA (u )‖2 =
M
∑

m=1

 

ym −
∑

β∈Z
µmβAo p t (β )

!2

, (5.18)

which can be computed in O (M |Z |) time instead of O (M N ).

Computational complexity: Pseudocode for level-adaptive MCMC (L-MCMC) appears in Algo-

rithm 5.2, which resembles Algorithm 5.1. The initial mappingA is inherited from a quantization

of the initial point x∗, r0 = 0 (r0 takes different values in Section 5.5.2), and other minor differences

between B-MCMC and L-MCMC appear in lines marked by asterisks.

We discuss computational requirements for each line of the pseudocode that is run within the

inner loop.

• Line 10 can be computed in O (q |Z |) time (see discussion of Line 9 of B-MCMC in Section 5.4.3).
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• Line 11 updates µmβ for m ∈ {1, · · · , M } in O (M ) time.

• Line 12 updates Ω. Because we only need to update O (1) columns and O (1) rows, each such

column and row contains O (|Z |) entries, and each entry is a sum over O (M ) terms, we need

O (M |Z |) time.

• Line 13 requires inverting Ω in O (|Z |3) time.

• Line 14 requires O (M |Z |) time, cf. (5.18).

• Line 15 requires O (|Z |) time.

In practice we typically have M � |Z |2, and so the aggregate complexity is O (r M N |Z |), which is

greater than the computational complexity of Algorithm 5.1 by a factor of O (|Z |).

5.5.2 Adaptivity in reproduction alphabet size

While Algorithm 5.2 adaptively maps u to RN , the signal estimation quality heavily depends on |Z |.
Denote the true alphabet of the signal byX , x ∈X N ; if the signal is continuous-valued, then |X |
is infinite. Ideally we want to employ as many levels as the runtime allows for continuous-valued

signals, whereas for discrete-valued signals we want |Z | = |X |. Inspired by this observation, we

propose to begin with some initial |Z |, and then adaptively adjust |Z | hoping to match |X |. Hence,

we propose the size- and level-adaptive MCMC algorithm (Algorithm 5.3), which invokes L-MCMC

(Algorithm 5.2) several times.

Three basic procedures: In order to describe the size- and level-adaptive MCMC (SLA-MCMC)

algorithm in detail, we introduce three alphabet adaptation procedures as follows.

• MERGE: First, find the closest adjacent levels β1,β2 ∈Z . Create a new level β3 and add it to

Z . LetA (β3) = (A (β1) +A (β2))/2. Replace ui by β3 whenever ui ∈ {β1,β2}. Next, remove β1

and β2 fromZ .

• ADD-out: Define the range RA = [minA (Z ), maxA (Z )], and IRA =maxA (Z )−minA (Z ).
Add a lower level β3 and/or upper level β4 toZ with

A (β3) =minA (Z )−
IRA

|Z |−1
,

A (β4) =maxA (Z ) +
IRA

|Z |−1
.

Note that
�

�{ui : ui =β3 or β4, i = 1, · · · , N }
�

�= 0, i.e., the new levels are empty.
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Figure 5.1 Flowchart of Algorithm 5.3 (size- and level-adaptive MCMC). L(r ) denotes running L-MCMC for
r super-iterations. The parameters r1,r2,r3,r4a , and r4b are the number of super-iterations used in Stages 1
through 4, respectively. Criteria D 1−D 3 are described in the text.

• ADD-in: First, find the most distant adjacent levels, β1 and β2. Then, add a level β3 toZ with

A (β3) = (A (β1) +A (β2))/2. For i ∈ {1, · · · , |Z |} s.t. ui =β1, replace ui by β3 with probability

Ps (ui =β2)
Ps (ui =β1) +Ps (ui =β2)

,

where Ps (·) is given in (5.11); for i ∈ {1, · · · , |Z |} s.t. ui =β2, replace ui by β3 with probability

Ps (ui =β1)
Ps (ui =β1) +Ps (ui =β2)

.

Note that
�

�{ui : ui =β3, i = 1, · · · , N }
�

� is typically non-zero, i.e., β3 tends not to be empty.

We call the process of running one of these procedures followed by running L-MCMC a round.

Size- and level-adaptive MCMC: SLA-MCMC is conceptually illustrated in the flowchart in

Figure 5.1. It has four stages, and in each stage we will run L-MCMC for several super-iterations; we

denote the execution of L-MCMC for r super-iterations by L(r ). The parameters r1, r2, r3, r4a , and

r4b are the number of super-iterations used in Stages 1 through 4, respectively. The choice of these

parameters reflects a trade-off between runtime and estimation quality.

In Stage 1, SLA-MCMC uses a fixed-size adaptive reproduction alphabetZ to tentatively estimate

the signal. The initial point of Stage 1 is obtained in the same way as L-MCMC. After Stage 1, the

initial point and temperature offset for each instance of L-MCMC correspond to the respective

outputs of the previous instance of L-MCMC. If the source is discrete-valued and |Z |> |X | in Stage 1,

then multiple levels in the outputZ of Stage 1 may correspond to a single level inX . To alleviate this

problem, in Stage 2 we merge levels closer than T =IRA / (K1× (|Z |−1)), where K1 is a parameter.
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However, |Z |might still be larger than needed; hence in Stage 3 we tentatively merge the closest

adjacent levels. The criterion D 1 evaluates whether the current objective function is lower (better)

than in the previous round; we do not leave Stage 3 until D 1 is violated. Note that if |X |> |Z | (this

always holds for continuous-valued signals), then ideally SLA-MCMC should not merge any levels

in Stage 3, because the objective function would increase if we merge any levels.

Define the outlier set S = {xi : xi /∈RA , i = 1, · · · , N }. Under Condition 5.1, S might be small or

even empty. When S is small, L-MCMC might not assign levels to represent the entries of S . To make

SLA-MCMC more robust to outliers, in Stage 4a we add empty levels outside the range RA and

then allow L-MCMC to change entries of u to the new levels during Gibbs sampling; we call this

populating the new levels. If a newly added outside level is not populated, then we remove it from

Z . Seeing that the optimal mappingAo p t in L-MCMC tends not to map symbols to levels with

low population, we consider a criterion D 2 where we will add an outside upper (lower) level if the

population of the current upper (lower) level is smaller than N /(K2|Z |), where K2 is a parameter.

That is, the criterion D 2 is violated if both populations of the current upper and lower levels are

sufficient (at least N /(K2|Z |)); in this case we do not need to add outside levels becauseAo p t will

map some of the current levels to represent the entries in S . The criterion D 3 is violated if all levels

added outside are not populated by the end of the round. SLA-MCMC keeps adding levels outside

RA until it is wide enough to cover most of the entries of x.

Next, SLA-MCMC considers adding levels inside RA (Stage 4b). If the signal is discrete-valued,

this stage should stop when |Z | = |X |. Else, for continuous-valued signals SLA-MCMC can add

levels until the runtime expires.

In practice, SLA-MCMC runs L-MCMC at most a constant number of times, and the computa-

tional complexity is in the same order of L-MCMC, i.e., O (r M N |Z |). On the other hand, SLA-MCMC

allows varying |Z |, which often improves the estimation quality.

5.5.3 Mixing

Donoho proved for the scalar channel setting that xK S is sampled from the posteriorPX |Y (x|y) [Don02].

Seeing that the Gibbs sampler used by MCMC (cf. Section 5.4.2) generates random samples, and the

outputs of our algorithm will be different if its random number generator is initialized with different

random seeds, we speculate that running SLA-MCMC several times will also yield independent

samples from the posterior, where we note that the runtime grows linearly in the number of times

that we run SLA-MCMC. By mixing (averaging over) several outputs of SLA-MCMC, we obtain bxavg,

which may have lower squared error w.r.t. the true x than the average squared error obtained by

a single SLA-MCMC output. Numerical results suggest that mixing indeed reduces the MSE (cf.

Figure 5.8); this observation suggests that mixing the outputs of multiple algorithms, including

running a random signal estimation algorithm several times, may reduce the squared error.
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5.6 Numerical Results

In this section, we demonstrate that SLA-MCMC is comparable and in many cases better than exist-

ing algorithms in estimation quality, and that SLA-MCMC is applicable when M >N . Additionally,

some numerical evidence is provided to justify Conjecture 5.1 in Section 5.3.3. Then, the advantage

of SLA-MCMC in estimating low-complexity signals is demonstrated. Finally, we compare B-MCMC,

L-MCMC, and SLA-MCMC performance.

We implemented SLA-MCMC in Matlab8 and tested it using several stationary ergodic sources.

Except when noted, for each source, signals x of length N = 10000 were generated. Each such x was

multiplied by a Gaussian random matrix A with normalized columns and corrupted by i.i.d. Gaussian

measurement noise z. Except when noted, the number of measurements M varied between 2000

and 7000. The noise varianceσ2
Z was selected to ensure that the signal-to-noise ratio (SNR) was 5 or

10 dB; SNR was defined as SNR= 10 log10

�

(NE[x 2])/(Mσ2
Z )
�

. According to Section 5.4.1, the context

depth q = o (log(N )), where the base of the logarithm is the alphabet size; using typical values such

as N = 10000 and |Z | = 10, we have log(N ) = 4 and set q = 2. While larger q will slow down the

algorithm, it might be necessary to increase q when N is larger. The numbers of super-iterations in

different stages of SLA-MCMC are r1 = 50 and r2 = r3 = r4a = r4b = 10, the maximum total number of

super-iterations is set to 240, the initial number of levels is |Z |= 7, and the tuning parameters from

Section 5.5.2 are K1, K2 = 10; these parameters seem to work well on an extensive set of numerical

experiments. SLA-MCMC was not given the true alphabetX for any of the sources presented in

this chapter; our expectation is that it should adaptively adjust |Z | to match |X |. The final estimate

bxavg of each signal was obtained by averaging over the outputs bx of 5 runs of SLA-MCMC, where in

each run we initialized the random number generator with another random seed, cf. Section 5.5.3.

These choices of parameters seemed to provide a reasonable compromise between runtime and

estimation quality.

We chose our performance metric as the mean signal-to-distortion ratio (MSDR) defined as

MSDR= 10 log10

�

E[x 2]/MSE
�

. For each M and SNR, the MSE was obtained after averaging over the

squared errors of bxavg for 50 draws of x, A, and z. We compared the performance of SLA-MCMC to

that of (i) compressive sensing matching pursuit (CoSaMP) [NT09], a greedy method; (ii) gradient

projection for sparse reconstruction (GPSR) [Fig07], an optimization-based method; (iii) message

passing approaches (for each source, we chose best-matched algorithms between EM-GM-AMP-

MOS (EGAM for short) [VS13] and turboGAMP (tG for short) [Zin12]); and (iv) Bayesian compressive

sensing [Ji08] (BCS). Note that EGAM [VS13] places a Gaussian mixture (GM) prior on the signal,

and tG [Zin12] builds a prior set including the priors for the signal, the support set of the signal, the

channel, and the amplitude structure. Both algorithms learn the parameters of their assumed priors

8A toolbox that runs the simulations in this chapter is available at http://people.engr.ncsu.edu/dzbaron/software/UCS
_BaronDuarte/
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Table 5.1 Computational complexity

Algorithms Complexity

SLA-MCMC O (r M N |Z |)
CoSaMP O (L log ‖x‖ε )

GPSR O (rP M N )
EGAM O (rM rE T1+ rM rE rG M N )

tG O (rE T2+ rE rG M N )

online from the measurements. We compare the computational complexities of the algorithms above

in Table 5.1, where L bounds the cost of a matrix-vector multiply with A or the Hermitian transpose

of A, and ε is a given precision parameter [NT09]; rP , rE , rG , rM are the number of GPSR [Fig07],

expectation maximization (EM), GAMP [Ran11], and model selection [VS13] iterations, respectively;

T1 and T2 are the average complexities for the EM algorithm and the turbo updating scheme [Zin12].

Because all these algorithms are iterative algorithms and require different number of iterations to

converge or reach a satisfactory estimation quality, we also report their typical runtimes here. Typical

runtimes are 1 hour (for continuous-valued signals) and 15 minutes (discrete-valued) per random

seed for SLA-MCMC, 30 minutes for EGAM [VS13] and tG [Zin12], and 10 minutes for CoSaMP [NT09]

and GPSR [Fig07] on an Intel(R) Core(TM) i7 CPU 860 @ 2.8GHz with 16.0GB RAM running 64 bit

Windows 7. The performance of BCS was roughly 5 dB below SLA-MCMC results. Hence, BCS results

are not shown in the sequel. We emphasize that algorithms that use training data (such as dictionary

learning) [RS12a; Aha06; Mai08; Zho12]will find our problem size N = 10000 too large, because they

need a training set that has more than N signals. On the other hand, SLA-MCMC does not need to

train itself on any training set, and hence is advantageous.

Among these baseline algorithms designed for i.i.d. signals, GPSR [Fig07] and EGAM [VS13]

only need y and A, and CoSaMP [NT09] also needs the number of non-zeros in x. Only tG [Zin12] is

designed for non-i.i.d. signals; however, it must be aware of the probabilistic model of the source.

Finally, GPSR [Fig07] performance was similar to that of CoSaMP [NT09] for all sources considered

in this section, and thus is not plotted.

5.6.1 Performance on discrete-valued sources

Bernoulli source: We first present results for an i.i.d. Bernoulli source. The Bernoulli source followed

the distribution fX (x ) = 0.03δ(x − 1) + 0.97δ(x ), where δ(·) is the Dirac delta function. Note that

SLA-MCMC did not knowX = {0,1} and had to estimate it on the fly. We chose EGAM [VS13] for

message passing algorithms because it fits the signal with GM’s, which can accurately characterize

signals from an i.i.d. Bernoulli source. The resulting MSDR’s for SLA-MCMC, EGAM [VS13], and

CoSaMP [NT09] are plotted in Figure 5.2. We can see that when SNR= 5 dB, EGAM [VS13] approaches
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Figure 5.2 SLA-MCMC, EGAM, and CoSaMP estimation results for a source with i.i.d. Bernoulli entries with
non-zero probability of 3% as a function of the number of Gaussian random measurements M for different
SNR values (N = 10000).

the MMSE [ZB13] performance for low to medium M ; although SLA-MCMC is often worse than

EGAM [VS13], it is within 3 dB of the MMSE performance. This observation that SLA-MCMC ap-

proaches the MMSE for SNR= 5 dB partially substantiates Conjecture 5.1 in Section 5.3.3. When

SNR= 10 dB, SLA-MCMC is comparable to EGAM [VS13]when M ≥ 3000. CoSaMP [NT09] has worse

MSDR.

Dense Markov-Rademacher source: Considering that most algorithms are designed for i.i.d.

sources, we now illustrate the performance of SLA-MCMC on non-i.i.d. sources by simulating a

dense Markov-Rademacher (MRad for short) source. The non-zero entries of the dense MRad signal

were generated by a two-state Markov state machine (non-zero and zero states). The transition

from zero to non-zero state for adjacent entries had probability P01 =
3

70 , while the transition from

non-zero to zero state for adjacent entries had probability P10 = 0.10; these parameters yielded 30%

non-zero entries on average. The non-zeros were drawn from a Rademacher distribution, which took

values±1 with equal probability. With such denser signals, we may need to take more measurements

and/or require higher SNR’s to achieve similar performance to previous examples. The number

of measurements varied from 6000 to 16000, with SNR= 10 and 15 dB. Although tG [Zin12] does

not provide an option that accurately characterize the MRad source, we still chose to compare

against its performance because it is applicable to non-i.i.d. signals. The MSDR’s for SLA-MCMC

and tG [Zin12] are plotted in Figure 5.3. CoSaMP [NT09] performs poorly as it is designed for sparse

signal estimation, and its results are not shown. Although tG [Zin12] is designed for non-i.i.d. sources,

it is nonetheless outperformed by SLA-MCMC. This example shows that SLA-MCMC estimates

non-i.i.d. signals well and is applicable to general linear inverse problems. However, recall that the
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Figure 5.3 SLA-MCMC and tG estimation results for a dense two-state Markov source with non-zero entries
drawn from a Rademacher (±1) distribution as a function of the number of Gaussian random measurements
M for different SNR values (N = 10000).

computational complexity of SLA-MCMC is O (r M N |Z |). Hence, despite the appealing performance

of SLA-MCMC shown in this example, we will suffer from high computational time when we have to

apply SLA-MCMC in the case when M >N .

5.6.2 Performance on continuous sources

We now discuss the performance of SLA-MCMC in estimating continuous sources.

Sparse Laplace (i.i.d.) source: For unbounded continuous-valued signals, which do not adhere

to Condition 5.1, we simulated an i.i.d. sparse Laplace source following the random variable X =

XB XL , where XB ∼Ber(0.03) is a Bernoulli random variable and XL follows a Laplace distribution

with mean zero and variance one. We chose EGAM [VS13] for message passing algorithms because

it fits the signal with GM, which can accurately characterize signals from an i.i.d. sparse Laplace

source. The MSDR’s for SLA-MCMC, EGAM [VS13], and CoSaMP [NT09] are plotted in Figure 5.4. We

can see that EGAM [VS13] approaches the MMSE [ZB13] performance in all settings; SLA-MCMC

outperforms CoSaMP [NT09], while it is approximately 2 dB worse than the MMSE. Recall from

Conjecture 5.1 that we expect to achieve twice the MMSE, which is approximately 3 dB below the

signal-to-distortion ratio of MMSE, and thus SLA-MCMC performance is reasonable. This example

of SLA-MCMC performance approaching the MMSE further substantiates Conjecture 5.1.

Markov-Uniform source: For bounded continuous-valued signals, which adhere to Condi-

tion 5.1, we simulated a Markov-Uniform (MUnif for short) source, whose non-zero entries were

generated by a two-state Markov state machine (non-zero and zero states) with P01 =
3

970 and
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Figure 5.4 SLA-MCMC, EGAM, and CoSaMP estimation results for an i.i.d. sparse Laplace source as a function
of the number of Gaussian random measurements M for different SNR values (N = 10000).

P10 = 0.10; these parameters yielded 3% non-zero entries on average. The non-zero entries were

drawn from a uniform distribution between 0 and 1. We chose tG with Markov support and GM

model options [Zin12] for message passing algorithms. We plot the resulting MSDR’s for SLA-MCMC,

tG [Zin12], and CoSaMP [NT09] in Figure 5.5. We can see that the CoSaMP [NT09] lags behind in

MSDR. The SLA-MCMC curve is close to that of tG [Zin12]when SNR= 10 dB, and it is slightly better

than tG [Zin12]when SNR= 5 dB.

When the signal model is known, the message passing approaches EGAM [VS13] and tG [Zin12]

achieve quite low MSE’s, because they can get close to the Bayesian MMSE. Sometimes the model

is only known imprecisely, and SLA-MCMC can improve over message passing; for example, it is

better than tG [Zin12] in estimating MUnif signals (Figure 5.5), because tG [Zin12] approximates the

uniformly distributed non-zeros by GM.

5.6.3 Comparison between discrete and continuous sources

When the source is continuous (Figures 5.4 and 5.5), SLA-MCMC might be worse than the existing

message passing approaches (EGAM [VS13] and tG [Zin12]). One reason for the under-performance

of SLA-MCMC is the 3 dB gap of Conjecture 5.1. The second reason is that SLA-MCMC can only assign

finitely many levels to approximate continuous-valued signals, leading to under-representation

of the signal. However, when it comes to discrete-valued signals that have finite size alphabets

(Figures 5.2 and 5.3), SLA-MCMC is comparable to and in many cases better than existing algorithms.

Nonetheless, we observe in the figures that SLA-MCMC is far from the state-of-the-art when the

SNR is high and measurement rate is low. Additionally, the dense MRad source in Figure 5.3 has
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Figure 5.5 SLA-MCMC, tG, and CoSaMP estimation results for a two-state Markov source with non-zero entries
drawn from a uniform distribution U [0, 1] as a function of the number of Gaussian random measurements
M for different SNR values (N = 10000).

only a limited number of discrete levels and may not provide a general enough example.

5.6.4 Performance on low-complexity signals

SLA-MCMC promotes low complexity due to the complexity-penalized term in the objective func-

tion (5.10). Hence, it tends to perform well for signals with low complexity such as the signals in

Figures 5.2 and 5.3 (note that the Bernoulli signal is sparse while the MRad signal is denser). In this

subsection, we simulated a non-sparse low-complexity signal. We show that complexity-penalized

approaches such as SLA-MCMC might estimate low-complexity signals well.

Four-state Markov source: To evaluate the performance of SLA-MCMC for discrete-valued non-

i.i.d. and non-sparse signals, we examined a four-state Markov source (Markov4 for short) that

generated the pattern +1,+1,−1,−1,+1,+1,−1,−1 · · · with 3% errors in state transitions, resulting in

the signal switching from −1 to +1 or vice versa either too early or too late. Note that the estimation

algorithm did not know that this source is a binary source. While it is well known that sparsity-

promoting CS signal estimation algorithms [Zin12; NT09; Fig07] can estimate sparse sources from

linear measurements, the aforementioned switching source is not sparse in conventional sparsifying

bases (e.g., Fourier, wavelet, and discrete cosine transforms), rendering such sparsifying transforms

not applicable. Signals generated by this Markov source can be sparsified using an averaging analysis

matrix [Can11]whose diagonal and first three lower sub-diagonals are filled with +1, and all other

entries are 0; this transform yields 6% non-zeros in the sparse coefficient vector. However, even

if this matrix had been known a priori, existing algorithms based on analysis sparsity [Can11] did
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Figure 5.6 SLA-MCMC estimation results for a four-state Markov switching source as a function of the
measurement rate κ for different SNR values and signal lengths. Existing CS algorithms fail at estimating this
signal, because this source is not sparse.

not perform satisfactorily, yielding MSDR’s below 5 dB. Thus, we did not include the results for

these baseline algorithms in Figure 5.6. On the other hand, Markov4 signals have low complexity in

the time domain, and hence, SLA-MCMC successfully estimated Markov4 signals with reasonable

quality even when M was relatively small. This Markov4 source highlights the special advantage of

our approach in estimating low-complexity signals.

The MSDR’s for shorter Markov4 signals are also plotted in Figure 5.6. We can see that SLA-

MCMC performs better when the signal to be estimated is longer. Indeed, SLA-MCMC needs a signal

that is long enough to learn the statistics of the signal.

5.6.5 Performance on real world signals

Our experiments up to this point use synthetic signals, where SLA-MCMC has shown comparable

and in many cases better results than existing algorithms. This subsection evaluates how well

SLA-MCMC estimates a real world signal. We use the “Chirp” sound clip from Matlab: we cut a

consecutive part with length 9600 out of the “Chirp” (denoted by x) and performed a short-time

discrete cosine transform (DCT) with window size, number of DCT points, and hop size all being 32.

Then we vectorized the resulting short-time DCT coefficients matrix to form a coefficient vector θ

of length 9600. By denoting the short-time DCT matrix by W−1, we have θ =W−1x. Therefore, we can

rewrite (5.1) as y= eAθ + z, where eA=AW. We want to estimate θ from the measurements y and the

matrix eA. After we obtain the estimate bθ , we obtain the estimated signal by bx=Wbθ . Although the

coefficient vector θ may exhibit some type of memory, it is not readily modeled in closed form, and
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Figure 5.7 SLA-MCMC and EGAM estimation results for a Chirp signal as a function of the measurement rate
κ for different SNR values (N = 9600).

so we cannot provide a valid model for tG [Zin12]. Instead, we use EGAM [VS13] as our benchmark

algorithm. We do not compare to CoSaMP [NT09] because it falls behind in performance as we have

seen from other examples. The MSDR’s for SLA-MCMC and EGAM [VS13] are plotted in Figure 5.7,

where SLA-MCMC outperforms EGAM by 1–2 dB.

5.6.6 Comparison of B-MCMC, L-MCMC, and SLA-MCMC

We compare the performance of B-MCMC, L-MCMC, and SLA-MCMC with different numbers of

seeds (cf. Section 5.5.3) by examining the MUnif source (cf. Section 5.6.2). We ran B-MCMC with the

fixed uniform alphabetRF in (5.5) with |RF |= 10 levels. L-MCMC was initialized in the same way

as Stage 1 of SLA-MCMC. B-MCMC and L-MCMC ran for 100 super-iterations before outputting

the estimates; this number of super-iterations was sufficient because it was greater than r1 = 50 in

Stage 1 of SLA-MCMC. The results are plotted in Figure 5.8. B-MCMC did not perform well given the

RF in (5.5) and is not plotted. We can see that SLA-MCMC outperforms L-MCMC. Averaging over

more seeds provides an increase of 1 dB in MSDR.9 It is likely that averaging over more seeds with

each seed running fewer super-iterations will decrease the squared error. We leave the optimization

of the number of seeds and the number of super-iterations in each seed for future work. Finally,

we tried a “good” reproduction alphabet in B-MCMC, eRF =
1

|RF | −1/2
{0, · · · , |RF | − 1}, and the

results were close to those of SLA-MCMC. Indeed, B-MCMC is quite sensitive to the reproduction

alphabet, and Stages 2–4 of SLA-MCMC find a good set of levels. Example output levelsA (Z ) of

SLA-MCMC were: {−0.001, 0.993} for Bernoulli signals, {−0.998, 0.004, 1.004} for dense MRad signals,

9For other sources, we observed an increase in MSDR of up to 2 dB.
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Figure 5.8 SLA-MCMC with different number of random seeds and L-MCMC estimation results for the Markov-
Uniform source described in Figure 5.5 as a function of the number of Gaussian random measurements M
for different SNR values (N = 10000).

21 levels spread in the range [−3.283, 4.733] for i.i.d. sparse Laplace signals, 22 levels spread in the

range [−0.000,0.955] for MUnif signals, and {−1.010,0.996} for Markov4 signals; we can see that

SLA-MCMC adaptively adjusted |Z | to match |X | so that these levels represented each signal well.

Also, we can see from Figures 5.2–5.4 that SLA-MCMC did not perform well in the low measurements

and high SNR setting, which was due to mismatch between |Z | and |X |.

5.7 Approximate Message Passing with Universal Denoising

We note in passing another universal algorithm, approximate message passing with universal

denoising (AMP-UD) [Ma14a; Ma16], for CS signal estimation, of which the author of this dissertation

is a coauthor. The signal x is assumed to be stationary and ergodic, but the input statistics are

unknown. AMP-UD is a novel algorithmic framework that combines: (i) the approximate message

passing CS signal estimation framework [Don09; Mon12; BM11; Krz12a; Krz12b; BK15], which solves

the CS signal estimation problem by iterative scalar channel denoising; (ii) a universal denoising

scheme based on context quantization [SW08; SW09], which partitions the stationary ergodic

signal denoising into i.i.d. sub-sequence denoising; and (iii) a density estimation approach that

approximates the probability distribution of an i.i.d. sequence by fitting a GM model [FJ02]. In

addition to the algorithmic framework, Ma et al. [Ma14a; Ma16] provide three contributions: (i)

numerical results showing that state evolution [Don11; BM11; JM12; Don13; Bay15] holds for non-

separable Bayesian sliding-window denoisers; (ii) an i.i.d. denoiser based on a modified GM learning

algorithm; and (iii) a universal denoiser that does not need information about the range where

82



0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

Number of Measurements ×104

5

10

15

20

25

30

35

40

45

M
e
a
n
 S

ig
n
a
l-
to

-D
is

tr
o
ti
o
n
 R

a
ti
o
 (

d
B

)

15dB AMP-UD

15dB SLA-MCMC

15dB tG

10dB AMP-UD

10dB SLA-MCMC

10dB tG

Figure 5.9 AMP-UD [Ma14a; Ma16], SLA-MCMC, and tG estimation results for a dense two-state Markov
source with non-zero entries drawn from a Rademacher (±1) distribution as a function of the number of
Gaussian random measurements M for different SNR values (N = 10000).

the input takes values from or require the input signal to be bounded. Ma et al. [Ma14a; Ma16]

provide two implementations of AMP-UD with one being faster and the other being more accurate.

The two implementations compare favorably with existing universal signal estimation algorithms

(including the SLA-MCMC algorithm discussed in this chapter) in terms of both estimation quality

and runtime.

To highlight the advantages of AMP-UD relative to SLA-MCMC, Figure 5.9 compares the AMP-UD

simulation results to the SLA-MCMC and tG [Zin12] results for the setting in Figure 5.3. We see that

AMP-UD outperforms both algorithms. Moreover, the runtime of AMP-UD is around 5 minutes to

estimate this MRad signal of length 10000, while it usually takes SLA-MCMC an hour and tG [Zin12]

30 minutes to estimate this signal. Therefore, we see that AMP-UD is indeed promising.

5.8 Conclusion

This chapter provided universal algorithms for signal estimation from linear measurements. Here,

universality denotes the property that the algorithm need not be informed of the probability distri-

bution for the recorded signal prior to acquisition; rather, the algorithm simultaneously builds esti-

mates both of the observed signal and its distribution. Inspired by the Kolmogorov sampler [Don02]

and motivated by the need for a computationally tractable framework, our contribution focused on

stationary ergodic signal sources and relied on a maximum a posteriori estimation algorithm. The

algorithm was then implemented via a Markov chain Monte Carlo formulation that is proven to
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be convergent in the limit of infinite computation. We reduced the computational complexity and

improve the estimation quality of the proposed algorithm by adapting the reproduction alphabet to

match the complexity of the input signal. Our experiments have shown that the performance of the

proposed algorithm is comparable to and in many cases better than existing algorithms, particularly

for low-complexity sources that do not exhibit standard sparsity or compressibility.

As we were finishing this work, Jalali and Poor [JP14] have independently shown that our formula-

tion (5.10) also provides an implementable version of Rényi entropy minimization. Their theoretical

findings further motivated our proposed universal MCMC formulation. We noted in passing another

universal algorithm that often achieves better estimation quality than the SLA-MCMC algorithm

discussed in this chapter.
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CHAPTER

6

DISCUSSION

This chapter concludes the dissertation. We begin by summarizing the previous chapters, and then

we list our contributions. Finally, we propose some possible future directions.

6.1 Summary and Contributions

Linear models find wide applications in the real world, and the problem of estimating the underlying

signal(s) from a linear model is called a linear inverse problem. Depending on the number of under-

lying signals, we have the single measurement vector problem (SMV) and the multi-measurement

vector problem (MMV); depending on how the measurement matrix and the measurements are

stored, we have the centralized linear model and the multi-processor linear model. Prior art includes

algorithms for linear inverse problems and their corresponding performance characterizations.

There are many remaining issues in the prior art. First, there is little work discussing the perfor-

mance characterization for the linear inverse problems themselves. Second, when dealing with the

distributed setting, there is little work studying the relations of different costs. At last, the existing

algorithms for linear inverse problems require the prior knowledge of the unknown signal to some

extent. These issues are important to practitioners. In this dissertation, we took advantage of the

tools in statistical physics and information theory to address these issues in the large system limit,

i.e., the length of the signal and the number of measurements go to infinity while the measurement

rate (ratio between the number of measurements and the length of the signal) stays constant.
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We started with providing background materials on statistical physics and information theory

in Chapter 2, and we also discussed the link between statistical physics and information theory.

Then, we studied the minimum mean squared error (MMSE) for MMV problem in Chapter 3 by

using the replica analysis from statistical physics. We analyzed the MMSE for two settings of MMV

problems, where the entries in the signal vectors are independent and identically distributed (i.i.d.),

and share the same support. One MMV setting has i.i.d. Gaussian measurement matrices, while

the other MMV setting has identical i.i.d. Gaussian measurement matrices. Replica analysis yields

identical free energy expressions for these two settings in the large system limit. Because of the

identical free energy expressions, the MMSE’s for both MMV settings are identical. By numerically

evaluating the free energy expression, we identified different performance regions for MMV where

the MMSE as a function of the channel noise variance and the measurement rate behaves differently.

We also identified a phase transition for belief propagation algorithms (BP) that separates regions

where BP achieves the MMSE asymptotically and where it is sub-optimal. Simulation results of

an approximated version of BP matched with the mean squared error (MSE) predicted by replica

analysis. As a special case of MMV, we extended our replica analysis to complex SMV, so that we can

calculate the MMSE for complex SMV with real or complex measurement matrices. Chapter 3 is

based on our work with Baron [ZB13] and with Baron and Krzakala [Zhu16b].

In Chapter 4, we studied the optimization of different costs in running a distributed algorithm;

these costs include (but are not limited to) the computation cost, the communication cost, and

the quality of the estimate. We focused our discussion on a certain distributed algorithm, multi-

processor approximate message passing (MP-AMP). Our results might be extended to some other

distributed and iterative algorithms. We proposed to use lossy compression (from information

theory) on the messages being transmitted across the network, and we allowed the coding rate

to vary from iteration to iteration for MP-AMP. Also, we proposed an algorithmic method to find

the optimal coding rate for the messages being transmitted in the network for MP-AMP, so that

we can achieve the smallest combined cost of computation and communication. In addition, we

theoretically analyzed the optimal coding rate sequence in the limit of low excess mean squared

error (EMSE=MSE-MMSE) and it turns out that the optimal coding rate sequence is approximately

linear when the EMSE is low. At last, we proved the existence of trade-offs among these different

costs for MP-AMP. Chapter 4 is based on our work with Han et al. [Han16] and with Baron and

Beirami [Zhu16c; Zhu16a].

In Chapter 5, we proposed a universal algorithm, size- and level-adaptive Markov chain Monte

Carlo (SLA-MCMC), to solve the linear inverse problem. Inspired by the Kolmogorov sampler [Don02]

and motivated by the need for a computationally tractable framework, our contribution focused on

stationary ergodic signal sources and relied on a maximum a posteriori estimation algorithm. The

algorithm was then implemented via a Markov chain Monte Carlo formulation (motivated from

thermodynamics) that is proven to be convergent in the limit of infinite computation. We reduced
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the computational complexity and improved the estimation quality of the proposed algorithm by

adapting the reproduction alphabet to match the complexity of the input signal. Our experiments

have shown that the performance of the proposed algorithm is comparable to and in many cases

better than existing algorithms, particularly for low-complexity signals that do not exhibit standard

sparsity or compressibility. Chapter 5 is based on our work with Baron and Duarte [Zhu14; Zhu15].

6.2 Future Directions

Along the line of this dissertation, we list some possible future directions.

1. Our replica analysis in Chapter 3 assumes that the non-zero entries of the jointly sparse signals

are i.i.d. However, in real-world application, sometimes the non-zero entries that share the

same support are dependent. Our derivation could possibly be generalized to such settings.

When the non-zero entries of the signals are dependent, we suspect that the MMV setting

with different matrices will yield lower MMSE than the MMV setting with identical matrices.

2. As is discussed in Chapter 3, studying other error metrics than the MSE could also be of

interest. We could extend the work of Tan and coauthors [Tan14a; Tan14b], so that we can both

study the theoretic optimal performance for user-defined additive error metric and design

algorithms that can achieve the theoretic optimal performance.

3. In Chapter 4, our study of different costs is within the MP-AMP algorithm. One possible

future direction could be to find a generic class of algorithms to which our analyses can apply.

Another possible direction is to incorporate such ideas in a real-world software package design,

which could be of great interest to industry.

4. Although both SLA-MCMC and AMP-UD from Chapter 5 seem promising, they are not so

resilient to measurement matrices that are far from i.i.d. In order to make a larger impact, we

need to design universal algorithms that are more resilient to non-i.i.d. matrices.
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APPENDIX

A

APPENDIX FOR CHAPTER 3

This appendix follows the derivation of Barbier and Krzakala [BK15], except for some nuances. Our

compressed derivation makes the presentation self-contained.

Plugging (3.31) and the following identity [BK15; Krz12a],

1=

∫

exp

�

−
n
∑

a=1

�

cma

�

ma N J −
N
∑

l=1

(bxa
l )
>xl

��

+
n
∑

a=1

�

ÒQa

�

Qa
N J

2
−

1

2

N
∑

l=1

(bxa
l )
>
bxa

l

�

�

−

∑

1≤a<b≤n

�

bqa b

�

qa b N J −
N
∑

l=1

(bxa
l )
>
bxb

l

��� n
∏

a=1

dQa d ÒQa d ma dcma

∏

1≤a<b≤n

d qa b d bqa b ,

into (3.10), we obtain

EA,x,z[Z
n ] =(2πσ2

Z )
− nM J

2

∫

exp

�

N J

�

1

2

n
∑

a=1

ÒQaQa −
1

2

∑

1≤a ,b≤n
a 6=b

bqa b qa b −
n
∑

a=1

cma ma

��





M
∏

µ=1

Xµ



×

ΓN
n
∏

a=1

dQa d ÒQa d ma dcma

∏

1≤a ,b≤n
a 6=b

d qa b d bqa b ,

(A.1)
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where

Γ =

∫

f (x1)

�

n
∏

a=1

f (bxa
1 )

�

exp

�

−
1

2

n
∑

a=1
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a
1 )
>
bxa

1 +
1

2
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a 6=b

bqa b (bx
a
1 )
>
bxb

1 +
n
∑

a=1

cma (bx
a
1 )
>x1

�

d x1

n
∏

a=1

dbxa
1 .

(A.2)

Further simplification of (3.10): The Stratanovitch transform [Str] in J dimensions is given by

exp







bq

2

∑

1≤a ,b≤n
a 6=b

(bxa
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>
bxb

1






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


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1, j bx
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1, j
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j=1
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exp

�

Æ

bq h j

n
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a=1

bx a
1, j −

bq

2

n
∑

a=1

�

bx a
1, j

�2
�

Dh j

=

∫

exp

�

Æ

bq h>
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a=1

bxa
1 −

bq

2

n
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a=1
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1

�>
bxa

1

�

Dh,

(A.3)

where h = [h1, ..., hJ ]>, and the differential Dh j =
1p
2π

e−h 2
j /2 d h j . With the Stratanovitch trans-

form (A.3), we simplify Γ (A.2) as follows,

Γ =

∫

f (x1)

∫

�

f (h)
�n Dh d x1, (A.4)

where f (h) =
∫

f (x1)e−
ÒQ+bq

2 bx>1 bx1+Òmbx>1 x1+
p
bq h>bx1 dbx1, and we drop the super-script a of bxa

1 owing to

the replica symmetry assumption [Krz12a; Krz12b]. In the limit of n → 0, using another Taylor

series [ f (h)]n ≈ 1+n log[ f (h)], we have
∫

[ f (h)]nDh ≈ 1+n
∫

log[ f (h)]Dh ≈ en
∫

log[ f (h)]Dh, so that

E
�∫

[ f (h)]nDh
	

≈E
�

1+n
∫

log[ f (h)]Dh
	

≈ eE{n
∫

log[ f (h)]Dh}. Hence, we can approximate (A.4) as

Γ = exp

�

n

∫

f (x1)

∫

log[ f (h)]Dh d x1

�

. (A.5)

Considering (A.5), we rewrite (A.1) as

EA,x,z[Z
n ] =

∫

enN eΦJ (m ,Òm ,q ,bq ,Q ,ÒQ )d m dcm d q d bq dQ d ÒQ , (A.6)
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where eΦJ (m ,cm , q , bq ,Q ,ÒQ ) is given below,

eΦJ (m ,cm , q , bq ,Q ,ÒQ ) =
J

2
(QÒQ +q bq −2mcm )−

M J

2N

�

ρ−2m +σ2
Z +q

Q −q +σ2
Z

+ log(Q −q +σ2
Z )− log(σ2

Z )

�

+

∫

f (x1)

�∫

log

�∫

f (bx1)exp
�

−
1

2
(ÒQ + bq )bx>1bx1+cmbx>1 x1+

Æ

bq h>bx1

�

dbx1

�

Dh

�

d x1−
M J

2N
log(2πσ2

Z ).

(A.7)

Free energy expression: We now substitute (A.6) into (3.9). Assuming that the limits in (3.9)

commute and that we only evaluate (3.9) at optimum points of eΦJ (A.7) [BK15; Krz12a; Krz12b], we

haveF = eΦJ (m∗,cm∗, q ∗, bq ∗,Q ∗,ÒQ ∗), where the asterisks denote stationary points. Next, we calculate

the stationary points:
∂ eΦJ

∂m
= 0⇒cm∗ =

κ

Q ∗−q ∗+σ2
Z

,

∂ eΦJ

∂ q
= 0⇒ bq ∗ = κ

σ2
Z +ρ−2m∗+q ∗

(Q ∗−q ∗+σ2
Z )2

,

∂ eΦJ

∂Q
= 0⇒ ÒQ ∗ = κ

2m∗−ρ−2q ∗+Q ∗

(Q ∗−q ∗+σ2
Z )2

,

where κ (3.3) is the measurement rate. Because we are analyzing the MMSE, we must assume that

the estimated prior matches the true underlying prior, which is a Bayesian setting. Thus, q ∗ =m∗

and Q ∗ = ρ (3.25). Let E = q ∗ − 2m∗ +Q ∗ =Q ∗ − q ∗, then we obtain bq ∗ = cm∗ = κ
E+σ2

Z
and ÒQ ∗ = 0.

Therefore, we solve for the free energy as a function of E in (3.13). Using a change of variables, we

obtain (3.14), which is a function of E . Using (3.25), the MSE is

D = E +Q −q = E +
ρ

N
N→∞−→ E . (A.8)

Hence, in the large system limit, we can regard the free energy (3.14) as a function of the MSE, D .
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APPENDIX

B

APPENDICES FOR CHAPTER 4

B.1 Impact of the Quantization Error

This appendix provides numerical evidence that (i) the quantization error nt is independent of

the scalar channel noise wt (4.11) in the fusion center and (ii) wt +nt is independent of the signal

x. In the following, we simulate the AMP equivalent scalar channel in each processor node and

in the fusion center. In the interest of simple implementation, we use scalar quantization (SQ) to

quantize fp
t (4.8) (in each processor node) and hypothesis testing to evaluate (i) whether wt and nt

(in the fusion center) are independent and (ii) whether wt +nt and x are independent. Both parts

are necessary for lossy SE (4.12) to hold: part (i) ensures that we can predict the variance of wt +nt

byσ2
t +P Dt and part (ii) ensures that lossy MP-AMP falls within the general framework of Bayati

and Montanari [BM11] and Rush and Venkataramanan [RV16], so that lossy SE (4.12) holds. Details

about our simulation appear below.

Considering (4.5) and (4.8), we obtain that the AMP equivalent scalar channel in each processor

node can be expressed as

fp
t =

1

P
x+wp

t , (B.1)

where
∑P

p=1 wp
t = wt (4.5), and the variances of wp

t and wt can be expressed as (σp
t )

2 and σ2
t ,
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Figure B.1 PCC test results. The darkness of the shades shows the fraction of 100 tests where we reject the null
hypothesis (random variables being tested are uncorrelated) with 5% confidence. The horizontal and vertical
axes represent the quantization bin size γ of the SQ and the scalar channel noise standard deviation (std)σp

t

in each processor node, respectively. Panel (a): Test the correlation between wt and nt . Panel (b): Test the
correlation between wt +nt and x.

respectively (4.12). Hence, we obtainσ2
t =

∑P
p=1(σ

p
t )

2. The signal x follows (4.18) with ρ = 0.1. The

entries of wp
t are i.i.d. and followN (0, (σp

t )
2). Next, we apply an SQ to fp

t (B.1),

Q (fp
t ) =

1

P
x+wp

t +np
t , (B.2)

where Q (·) denotes the quantization process, np
t is the quantization error in processor node p , and

recall that the variance of np
t is Dt . We simulate the fusion center by calculating

ft =
P
∑

p=1

Q (fp
t ) = x+wt +nt , (B.3)

where nt =
∑P

p=1 np
t . Note that wt is Gaussian due to properties of AMP [Don09; Mon12; BM11]. The

total quantization error at the fusion center, nt , is also Gaussian, due to the central limit theorem.

Hence, in order to test the independence of wt and nt (B.3), we need only test whether wt and nt

are uncorrelated. We also test whether wt +nt and x are uncorrelated.

We study the settings σ
p
t ∈ {10−0.5, · · · ,10−4} and γ ∈ {20, · · · ,2−10}, where γ denotes the SQ

bin size. In each setting, we simulate (B.1)–(B.3) 100 times and perform 100 Pearson correlation
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coefficient (PCC) tests [Pcc] for wt and nt , respectively. The null hypothesis of the PCC tests [Pcc] is

that wt and nt are uncorrelated. The null hypothesis is rejected if the resulting p -value is smaller

than 0.05.

For each setting, we record the fraction of 100 tests where the null hypothesis is rejected, which

is shown by the darkness of the shades in Figure B.1a. The horizontal and vertical axes represent the

quantization bin size γ and the standard deviation (std)σ
p
t , respectively. Similarly, we test wt +nt

and x; results appear in Figure B.1b. We can see that when γ�σp
t (bottom right corner), (i) wt and

nt tend to be independent and (ii) wt +nt and x tend to be independent.

Now consider Figure B.1b, which provides PCC test results evaluating possible correlations

between wt +nt and x. There appears to be a phase transition that separates regions where wt +nt

and x seem independent or dependent. We speculate that this phase transition is related to the pdf

of 1
P x+wp

t . To explain our hypothesis, note that when the noise wp
t is low (top part of Figure B.1b),

the phase transition is less affected by noise, and the role of γ is smaller. By contrast, large noise

(bottom) sharpens the phase transition.

In summary, it appears that when γ< 2σ
p
t =

2σtp
P

, we can regard (i) wt and nt to be independent

and (ii) wt +nt and x to be independent. The requirement γ< 2σ
p
t =

2σtp
P

is motivated by Widrow

and Kollár [WK08]; we leave the study of this phase transition for future work.

B.2 Numerical Evidence for Lossy SE

This appendix provides numerical evidence for lossy SE (4.23). We simulate two signal types, one is

the Bernoulli-Gaussian signal (4.18) and the other is a mixture Gaussian.

Bernoulli-Gaussian signals: We generate 50 signals of length 10000 according to (4.18). These

signals are measured by M = 5000 measurements spread over P = 100 distributed nodes. We estimate

each of these signals by running T = 10 MP-AMP iterations. ECSQ is used to quantize fp
t (B.1), and

Q (fp
t ) (B.2) is encoded at coding rate Rt . We simulate settings with sparsity rate ρ ∈ {0.1,0.2} and

noise varianceσ2
Z ∈ {0.01, 0.001}. In each setting, we randomly generate the coding rate sequence R,

s.t. the quantization bin size at each iteration satisfies γ< 2σtp
P

(details in Appendix B.1).1 A Bayesian

denoiser, ηt (·) =E[x|ft ], is used in (4.10). The resulting MSE’s from the MP-AMP simulation averaged

over the 50 signals, along with MSE’s predicted by lossy SE (4.23), are plotted in Figure B.2a. We can

see that the simulated MSE’s are close to the MSE’s predicted by lossy SE.

Mixture Gaussian signals: We independently generate 50 signals of length 10000 according to

X =
∑

i∈{0,1,2}1XB=i XG ,i where XB ∼ cat(0.5,0.3,0.2) follows a categorical distribution on alphabet

{0, 1, 2}, XG ,0 ∼N (0, 0.1), XG ,1 ∼N (−1.5, 0.8), and XG ,2 ∼N (2, 1). We simulate settings with T = 10,

1Note that the constraint on γ implies that R is likely monotone non-decreasing.
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Figure B.2 Comparison of the MSE predicted by lossy SE (4.12) and the MSE of MP-AMP simulations for
various settings. The round markers represent MSE’s predicted by lossy SE, and the (red) crosses represent
simulated MSE’s. Panel (a): Bernoulli-Gaussian signal. Panel (b): Mixture Gaussian signal.

P = 100, κ= M
N ∈ {0.8,1.6}, andσ2

Z ∈ {0.5,0.05}. In each setting, we randomly generate the coding

rate sequence R, s.t. the quantization bin size at each iteration satisfies γ < 2σtp
P

. The results are

plotted in Figure B.2b. The simulation results match well with the lossy SE predictions.

B.3 Integrity of Discretized Search Space

When a coding rate bR is selected in MP-AMP iteration t , DP calculates the equivalent scalar channel

noise variance σ2
t+1 (4.11) for the next MP-AMP iteration according to (4.12). The variance σ2

t+1

is unlikely to lie on the discretized search space for σ2
t , denoted by the grid G (σ2). Therefore,

ΦT−(t+1)(σ2
t+1(bR )) in (4.17) does not reside in memory. Instead of brute-force calculation of Φ{·}(·),

we estimate it by fitting a function to the closest neighbors ofσ2
t+1 that lie on the grid G (σ2) and

finding Φ{·}(·) according to the fit function. We evaluate a linear interpolation scheme.

Interpolation inG (σ2): We run DP over the original coarse grid G c (σ2)with resolution∆σ2 =

0.01 dB, and a 4× finer grid G f (σ2) with ∆σ2 = 0.0025 dB. We obtain the cost function with the

coarse grid Φc
T−t ((σ

2
t )c ) and the cost function with the fine grid Φ

f
T−t ((σ

2
t ) f ), ∀t ∈ {1, ..., T }, (σ2

t )c ∈
G c (σ2), (σ2

t ) f ∈G
f (σ2). Next, we interpolate Φc

T−t ((σ
2
t )c ) over the fine grid G f (σ2) and obtain the

interpolated Φi
T−t ((σ

2
t )c ). In order to compare Φi

T−t ((σ
2
t )c ) with Φ

f
T−t ((σ

2
t )c ) in a comprehensive

way, we consider the settings given by the Cartesian product of the following variables: (i) the
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Figure B.3 Justification of the discretized search space used in DP. Top panel: Empirical PMF of the error in
the cost function∆Φ{·}(·) used to verify the integrity of the linear interpolation in the discretized search space
ofσ2. Bottom panel: Empirical PMF of∆Ra g g ; used to verify the integrity of the choice of∆R = 0.1.

number of distributed nodes P ∈ {50,100}, (ii) sparsity rate ρ ∈ {0.1,0.2}, (iii) measurement rate

κ = M
N ∈ {3ρ,5ρ}, (iv) EMSE εT ∈ {1,0.5}dB, (v) parameter b ∈ {0.5,2}, and (vi) noise variance

σ2
Z ∈ {0.01,0.001}. In total, there are 64 different settings. We calculate the error ∆ΦT−t

�

(σ2
t )c
�

=

Φi
T−t

�

(σ2
t )c
�

−Φ f
T−t

�

(σ2
t )c
�

and plot the empirical probability mass function (PMF) of∆ΦT−t

�

(σ2
t )c
�

over all t , (σ2
t )c , and all 64 settings. The resulting empirical PMF of∆Φ{·}(·) is plotted in the top panel

of Figure B.3. We see that with 99% probability, the error satisfies∆Φ{·} (·)≤ 0.2, which corresponds

to an inaccuracy of approximately 0.2 in the aggregate coding rate Ra g g .2 In the simulation, we

used a resolution of∆R = 0.1. Hence, the inaccuracy of 0.2 in Ra g g (over roughly 10 iterations) is

negligible. Therefore, we use linear interpolation with a coarse grid G c (σ2)with∆σ2 = 0.01 dB.

Integrity of choice of∆R : We tentatively select resolution∆R = 0.1, and investigate the integrity

of this∆R over the 64 different settings above. After the coding rate sequence R∗ = (R ∗1 , · · · , R ∗T ) is

obtained by DP for each setting, we randomly perturb R ∗t by Rp (t ) =R ∗t +βt , t = 1, ..., T , where Rp (t )

is the perturbed coding rate, the bias is βt ∈
�

−∆R
2 ,+∆R

2

�

, and Rp = (Rp (1), · · · , Rp (T )) is called the

perturbed coding rate sequence. After randomly generating 100 different perturbed coding rate

sequences Rp , we calculate the aggregate coding rate (4.14), R
p
a g g , of each Rp ; we only consider

the perturbed coding rate sequences that achieve EMSE no greater than the optimal coding rate

sequence R∗ given by DP. The bottom panel of Figure B.3 plots the empirical PMF of∆Ra g g , where

∆Ra g g = R
p
a g g −R ∗a g g and R ∗a g g = ||R

∗||1. Roughly 15% of cases in our simulation yield ∆Ra g g < 0

2Note that when calculating Φ f , we are still using the corresponding interpolation scheme. Although this comparison
is not ideal, we believe it still provides the reader with enough insight.
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Figure B.4 Illustration of the evolution of eut . The vertical axis shows eut =
N
M EMSE= N

M εt . The solid lines with
arrows denote the lossy SE associated with a coding rate sequence and dashed-dotted lines are auxiliary lines.

(meaning that the perturbed coding rate sequence has lower Ra g g ), while for the other 85% cases,

R∗ has lower Ra g g . Considering the resolution∆R = 0.1, we can see that the perturbed sequences

are only marginally better than R∗. Hence, we verified the integrity of∆R = 0.1.

B.4 Proof of Lemma 4.1

Proof. We show that our DP scheme (4.17) fits into Bertsekas’ formulation [Ber95], which has been

proved to be optimal. Under Bertsekas’ formulation, our decision variable is the coding rate Rt

and our state is the scalar channel noise varianceσ2
t . Our next-state function is the lossy SE (4.12)

with the distortion Dt being calculated from the RD function given the decision variable Rt . Our

additive cost associated with the dynamic system is b ×1Rt 6=0+Rt . Our control law maps the state

σ2
t to a decision (the coding rate Rt ). Therefore, our DP formulation (4.17) fits into the optimal DP

formulation of Bertsekas [Ber95]. Hence, our DP formulation (4.17) is also optimal for the discretized

search spaces of Rt andσ2
t .

B.5 Proof of Theorem 4.1

Proof. Our proof is based on the assumption that lossy SE (4.12) holds. Consider the geometry of

the SE incurred by R∗ for arbitrary iterations t and t + 1, as shown in Figure B.4. Let eSt = (eσ2
t , eut )

and R ∗t be the state and the optimal coding rate at iteration t , respectively. We know that the slope

of eg I (·) is eg ′I (·) = 1. Hence, the length of line segment fMt eIt is eσ2
t+1 = eut +P Dt . That is

P Dt = eσ
2
t+1− eut . (B.4)
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Similarly, we obtain

P Dt+1 = eσ
2
t+2− eut+1, (B.5)

where eut+1 and eσ2
t+1 obey

eσ2
t+1 = eg

−1
S (eut+1). (B.6)

Recall that, according to Taylor’s theorem (4.21), we obtain that

eg −1
S (eut+1) =

1

θ
eut+1+C eu 2

t+1, (B.7)

with θ defined in (4.22). Although C depends on eut+1, it is uniformly bounded, i.e., C ∈ [−B , B ] for

some 0≤ B <∞.

Fixing eut =
N
M ε

∗
t and eut+2 =

N
M ε

∗
t+2, we explore different distortions Dt and Dt+1 that obey (B.4)–

(B.6). According to Definition 4.2, among distortions that obey (B.4)–(B.6), the optimal D ∗t and D ∗t+1

correspond to the smallest aggregate rate at iterations t and t +1, Rt +Rt+1. Considering (4.24), we

have

Rt +Rt+1=
�

1

2
log2

�

C1

Dt

�

+
1

2
log2

�

C1

Dt+1

��

(1+ot (1)).

Therefore, in the large t limit, minimizing Rt +Rt+1 is identical to maximizing the product Dt Dt+1.

Considering (B.4)–(B.6), our optimization problem becomes maximization over F (eut+1), where

F (eut+1) = (eσ
2
t+2− eut+1)(eg

−1
S (eut+1)− eut ). (B.8)

Invoking Taylor’s theorem (B.7) and considering that C ∈ [−B , B ], we solve the optimization prob-

lem (B.8) in two extremes: one with C = B and the other with C =−B .

In the case of C = B , we obtain

F (eut+1) =−
1

θ
eu 2

t+1+
1

θ
eut+1eσ

2
t+2+B eσ2

t+2 eu
2
t+1−B eu 3

t+1− eut eσ
2
t+2+ eut eut+1.

The maximum of F (eut+1) is achieved when F ′(eut+1) = 0. That is,

F ′(eut+1) =−3B eu 2
t+1+

�

2B eσ2
t+2−

2

θ

�

eut+1+
eσ2

t+2

θ
+ eut = 0. (B.9)

Considering that 0< eut+1 < eut , the root of the quadratic equation (B.9) is

eu∗t+1 =
1

3B

��

B eσ2
t+2−

1

θ

�

+A
�

, (B.10)
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where

A =

√

√

√

�

B eσ2
t+2−

1

θ

�2

+3B

�

eσ2
t+2

θ
+ eut

�

. (B.11)

We can further simplify (B.11) as

A =
1

θ

q

1+B (θ eσ2
t+2+Bθ 2

eσ4
t+2+3θ 2

eut )

=
1

θ

�

1+
B

2
(θ eσ2

t+2+Bθ 2
eσ4

t+2+3θ 2
eut )

�

+O (eu 2
t ),

(B.12)

Plugging (B.12) into (B.10),

eu∗t+1 =
1

2
(eσ2

t+2+θ eut ) +O (eu 2
t ). (B.13)

Plugging (B.13) into (B.4) and (B.5),

P D ∗t =
1

2θ
(eσ2

t+2− eut θ ) +O (eu 2
t ),

P D ∗t+1 =
1

2
(eσ2

t+2− eu
2
t θ ) +O (eu 2

t ),

which leads to
D ∗t+1

D ∗t
= θ (1+O (eut )). (B.14)

These steps provided the optimal relation between D ∗t and D ∗t+1 when C = B . For the other

extreme case, C =−B , similar steps will lead to (B.14), where the differences between the results are

higher order terms. Note that for any C ∈ [−B , B ] the higher order term is bounded between the two

extremes. Hence, the optimal D ∗t and D ∗t+1 follow (B.14) leading to the first part of the claim (4.25).

Considering (4.24) and (B.14),

R ∗t+1−R ∗t =
1

2
log2

�

1

θ

�

(1+ot (1)).

Therefore, we obtain the second part of the claim (4.26).

B.6 Proof of Theorem 4.2

Proof. Our proof is based on the assumption that lossy SE (4.12) holds. Let us focus on an optimal

coding rate sequence R∗ = (R ∗1 , · · · , R ∗T ). Applying Taylor’s theorem to calculate the ordinate of point
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eSt+1 using its abscissa (Figure B.4), we obtain

eu∗t+1 = θ (eu
∗
t +P D ∗t ) +O ((eu∗t )

2). (B.15)

Therefore,
eu∗t+1

eu∗t
= θ +

θP D ∗t
eu∗t

+O (eu∗t ). (B.16)

Similarly, we obtain
eu∗t+2

eu∗t+1

= θ +
θP D ∗t+1

eu∗t+1

+O (eu∗t ). (B.17)

Plugging (B.14) and (B.15) into (B.17), we obtain

eu∗t+2

eu∗t+1

= θ +
θP D ∗t (1+O (u∗t ))
eu∗t +P D ∗t +O ((eu∗t )2)

+O (eu∗t )

= θ +
θP D ∗t
eu∗t +P D ∗t

+O (eu∗t ).
(B.18)

On the other hand, limt→∞
eu∗t+1
eu∗t
= limt→∞

eu∗t+2
eu∗t+1

. Therefore, considering (B.16) and (B.18), we obtain

lim
t→∞

θP D ∗t
eu∗t

= lim
t→∞

θP D ∗t
eu∗t +P D ∗t

,

which leads to limt→
D ∗t
eu∗t
= 0. We obtain (4.27) by noting that the optimal EMSE at iteration t is

ε∗t =
M
N eu∗t . Plugging (4.27) into (B.16), we obtain (4.28).
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APPENDIX

C

APPENDICES FOR CHAPTER 5

C.1 Proof of Theorem 5.1

Our proof mimics a very similar proof presented in [JW08; JW12] for lossy source coding; we in-

clude all details for completeness. The proof technique relies on mathematical properties of non-

homogeneous (e.g., time-varying) Markov chains (MC’s) [Bré99]. Through the proof, S ¬ (RF )N

denotes the state space of the MC of codewords generated by Algorithm 5.1, with size |S |= |RF |N .

We define a stochastic transition matrix P(t ) fromS to itself given by the Boltzmann distribution for

super-iteration t in Algorithm 5.1. Similarly, π(t ) defines the stable-state distribution onS for P(t ),

satisfying π(t )P(t ) =π(t ).

Definition C.1. [Bré99]Dobrushin’s ergodic coefficient of an MC transition matrix P is denoted by

ξ(P) and defined as ξ(P)¬ max
1≤i , j≤N

1

2
‖Pi −P j ‖1, where Pi denotes the i -th row of P.

From the definition, 0≤ ξ(P)≤ 1. Moreover, the ergodic coefficient can be rewritten as

ξ(P) = 1− min
1≤i , j≤N

N
∑

k=1

min(Pi k , Pj k ), (C.1)

where Pi j denotes the entry of P at the i -th row, j -th column.
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We group the product of transition matrices across super-iterations as P(t1→t2) =
∏t2

t=t1
P(t ). There

are two common characterizations for the stable-state behavior of a non-homogeneous MC.

Definition C.2. [Bré99] A non-homogeneous MC is called weakly ergodic if for any distributions

η and ν over the state space S , and any t1 ∈N, lim supt2→∞‖ηP(t1→t2)−νP(t1→t2)‖1 = 0, where ‖ · ‖1

denotes the `1 norm. Similarly, a non-homogeneous MC is called strongly ergodic if there exists

a distribution π over the state space S such that for any distribution η over S , and any t1 ∈ N,

lim supt2→∞‖ηP(t1→t2)−π‖1 = 0. We will use the following two theorems from [Bré99] in our proof.

Theorem C.1. [Bré99] An MC is weakly ergodic if and only if there exists a sequence of integers

0≤ t1 ≤ t2 ≤ · · · such that
∞
∑

i=1

�

1−ξ
�

P(ti→ti+1)
��

=∞.

Theorem C.2. [Bré99] Let an MC be weakly ergodic. Assume that there exists a sequence of probability

distributions {π(t )}∞i=1 on the state spaceS such that π(t )P(t ) =π(t ). Then the MC is strongly ergodic if
∞
∑

t=1

‖π(t )−π(t+1)‖1 <∞.

The rest of proof is structured as follows. First, we show that the sequence of stable-state dis-

tributions for the MC used by Algorithm 5.1 converges to a uniform distribution over the set of

sequences that minimize the energy function as the iteration count t increases. Then, we show using

Theorems C.1 and C.2 that the non-homogeneous MC used in Algorithm 5.1 is strongly ergodic,

which by the definition of strong ergodicity implies that Algorithm 5.1 always converges to the

stable distribution found above. This implies that the outcome of Algorithm 5.1 converges to a

minimum-energy solution as t →∞, completing the proof of Theorem 5.1.

We therefore begin by finding the stable-state distribution for the non-homogeneous MC used

by Algorithm 5.1. At each super-iteration t , the distribution defined as

π(t )(w)¬
exp

�

−stΨ
Hq (w)

�

∑

z∈S exp
�

−stΨ
Hq (z)

� =
1

∑

z∈S exp
�

−st

�

ΨHq (z)−ΨHq (w)
�� (C.2)

satisfies π(t )P(t ) = π(t ), cf. (5.12). We can show that the distribution π(t ) converges to a uniform

distribution over the set of sequences that minimize the energy function, i.e.,

lim
t→∞

π(t )(w) =

¨

0 w /∈H ,
1
|H | w ∈H ,

(C.3)

whereH = {w ∈S subject to ΨHq (w) =minz∈S Ψ
Hq (z)}. To show (C.3), we will show that π(t )(w) is

increasing for w ∈H and eventually decreasing for w ∈H C . Since for w ∈H and ew ∈S we have

112



ΨHq (ew)−ΨHq (w)≥ 0, for t1 < t2 we have

∑

ew∈S
exp

�

−st1

�

ΨHq (ew)−ΨHq (w)
��

≥
∑

ew∈S
exp

�

−st2

�

ΨHq (ew)−ΨHq (w)
��

,

which together with (C.2) implies π(t1)(w)≤π(t2)(w). On the other hand, if w ∈H C , then we obtain

π(t )(w)=







∑

ew:ΨHq (ew)≥ΨHq (w)

exp
�

−st

�

ΨHq (ew)−ΨHq (w)
��

+
∑

ew:ΨHq (ew)<ΨHq (w)

exp
�

−st

�

ΨHq (ew)−ΨHq (w)
��







−1

.

(C.4)

For sufficiently large st , the denominator of (C.4) is dominated by the second term, which increases

when st increases, and therefore π(t )(w) decreases for w ∈ H C as t increases. Finally, since all

sequences w ∈H have the same energy ΨHq (w), it follows that the distribution is uniform over the

symbols inH .

Having shown convergence of the non-homogenous MC’s stable-state distributions, we now

show that the non-homogeneous MC is strongly ergodic. The transition matrix P(t ) of the MC at

iteration t depends on the temperature st in (5.14) used within Algorithm 5.1. We first show that the

MC used in Algorithm 5.1 is weakly ergodic via Theorem C.1; the proof of the following Lemma is

given in C.2.

Lemma C.1. The ergodic coefficient of P(t ) for any t ≥ 0 is upper bounded byξ
�

P(t )
�

≤ 1−exp(−st N∆q ),

where∆q is defined in (5.13).

We note in passing that Condition 5.1 ensures that∆q is finite. Using Lemma C.1 and (5.14), we

can evaluate the sum given in Theorem C.1 as

∞
∑

j=1

�

1−ξ
�

P( j )
��

≥
∞
∑

j=1

exp(−s j N∆q ) =
∞
∑

j=1

1

j 1/c
=∞,

and so the non-homogeneous MC defined by {P(t )}∞t=1 is weakly ergodic. Now we use Theorem C.2

to show that the MC is strongly ergodic by proving that
∞
∑

t=1

‖π(t )−π(t+1)‖1 <∞. Since we know from

earlier in the proof that π(t )(w) is increasing for w ∈H and eventually decreasing for w ∈H C , there
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exists a t0 ∈N such that for any t1 > t0, we have

t1
∑

t=t0

‖π(t )−π(t+1)‖1 =
∑

w∈H

t1
∑

t=t0

�

π(t+1)(w)−π(t )(w)
�

+
∑

w/∈H

t1
∑

t=t0

�

π(t )(w)−π(t+1)(w)
�

=
∑

w∈H

�

π(t1+1)(w)−π(t0)(w)
�

+
∑

w/∈H

�

π(t0)(w)−π(t1+1)(w)
�

=‖π(t1+1)−π(t0)‖1 ≤ ‖π(t1+1)‖1+ ‖π(t0)‖1 = 2.

Since the right hand side does not depend on t1, we have that
∑∞

t=1 ‖π(t )−π(t+1)‖1 <∞. This implies

that the non-homogeneous MC used by Algorithm 5.1 is strongly ergodic, and thus completes the

proof of Theorem 5.1.

C.2 Proof of Lemma C.1

Let w′, w′′ be two arbitrary sequences inS . The probability of transitioning from a given state to a

neighboring state within iteration t ′ of super-iteration t of Algorithm 5.1 is given by (5.12), and can

be rewritten as

P(t ,t ′)(w1
t ′−1a wN

t ′+1|w
t ′−1
1 b wN

t ′+1) =Pst
(wt ′ = a |w\t

′
) =

exp
�

−stΨ
Hq
�

wt ′−1
1 a wN

t ′+1

��

∑

b∈RF
exp

�

−stΨ
Hq
�

wt ′−1
1 b wN

t ′+1

��

=
exp

�

−st

�

ΨHq
�

wt ′−1
1 a wN

t ′+1

�

−ΨHq

min,t ′

�

wt ′−1
1 , wN

t ′+1

�

��

∑

b∈RF
exp

�

−st

�

ΨHq
�

wt ′−1
1 b wN

t ′+1

�

−ΨHq

min,t ′

�

wt ′−1
1 , wN

t ′+1

�

�� ≥
exp(−st∆q )

|RF |
,

where Ψ
Hq

min,t ′ (w
t ′−1
1 , wN

t ′+1) =minβ∈RF
ΨHq (wt ′−1

1 βwN
t ′+1). Therefore, the smallest probability of tran-

sition from w′ to w′′ within super-iteration t of Algorithm 5.1 is bounded by

min
w′,w′′∈RF

P(t )(w′′|w′)≥
N
∏

t ′=1

exp(−st∆q )

|RF |
=

exp(−st N∆q )

|RF |N
=

exp(−st N∆q )

|S |
.

Using the alternative definition of the ergodic coefficient (C.1),

ξ
�

P(t )
�

= 1− min
w′,w′′∈S

∑

ew∈S
min(P(t )(ew|w′),P(t )(ew|w′′))

≤ 1− |S |
exp(−st N∆q )

|S |
= 1−exp(−st N∆q ),

proving the lemma.
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