
ABSTRACT

TAN, JIN. Fast and Robust Compressive Signal Reconstruction via Approximate Message
Passing and Denoising. (Under the direction of Dror Baron.)

The rapid development of information technology in recent decades has led to an increasing

demand for data acquisition systems, such as audio recorders and imaging devices. Moreover,

large amounts of data must be stored or transmitted, and the time or power consumption

required for transmission must be reduced. Although many types of data are high dimensional,

they can often be represented efficiently when being projected to another space, which implies

that the data is sparse or compressible in this projected space. Compressive sensing is an

emerging field that employs the sparsity property of data and acquires the data in a compressive

fashion. Our goal is to reconstruct the original data from those compressive measurements.

Generalized approximate message passing (GAMP) and approximate message passing (AMP)

are iterative compressive signal reconstruction algorithms that enjoy many mathematical and

practical advantages. In this dissertation we utilize these advantages and develop fast and robust

compressive signal reconstruction algorithms.

This dissertation contains two parts. In the first part, we explore compressive signal re-

construction algorithms that achieve application-oriented reconstruction quality. In order to

evaluate the quality of reconstruction, standard error metrics such as square error are usually

evaluated, and algorithms are developed to minimize these error metrics. However, reconstruc-

tion algorithms that minimize standard error metrics may not be robust, because in some

applications they may not achieve satisfactory reconstruction quality. Therefore, we propose a

compressive signal reconstruction algorithm that modifies the last iteration of GAMP and min-

imizes a broad range of user-defined error metrics, which provides great flexibility in achieving

application-oriented performance.

Infinity norm error, also known as worst-case error, is an example of such non-standard

error metrics. By minimizing the infinity norm error, we ensure that the reconstructed error

for each signal component is modest. We explore some interesting theoretical properties of the

worst-case error of signal reconstruction procedures.

In the second part of this dissertation, we study compressive imaging problems. Compressive

imaging is an important application of compressive sensing, where the signals of interest are

images. First, we consider a general compressive imaging problem where the imaging process

is modeled by a random matrix; we then look into practical hyperspectral imaging problems,

where the imaging process is modeled by a highly structured matrix that is far from random.

Considering that AMP is an iterative signal reconstruction framework that performs scalar

denoising at each iteration, we apply efficient and robust image denoisers within AMP iterations.



Numerical results show that our algorithms for random matrix imaging and hyperspectral

imaging are both fast and robust, and improve over the state of the art in terms of runtime

and reconstruction quality.
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Chapter 1

Introduction

1.1 Overview of Compressive Signal Reconstruction

Recent decades have been characterized by continuous radical developments in information

technology, which have been deployed in many aspects of industrial applications and our daily

lives. This has led to a deluge of data being acquired, processed, and stored, which has resulted

in an increasing demand for hardware such as acquisition devices, data processors, and storage

units. To reduce these hardware bottlenecks, it is desirable to compress the data as much as

possible. At the same time, when the data is retrieved, we want to reconstruct it accurately.

To overcome these challenges, data compression is widely used. However, if the data can

be compressed after acquisition, then it may also be possible for a reduced amount of data to

be acquired, and this concept encourages the emergence of compressive sensing [7, 20, 31]. The

intellectual foundations underlying compressive sensing rely on the ubiquitous compressibility

of data: in an appropriate basis, most of the information contained in a set of data often resides

in just a few large coefficients. The image compression standard JPEG (Joint Photographic

Experts Group), for example, employs a discrete cosine transform (DCT) to approximate an

image with a few large coefficients. It has been proved that, for a variety of settings, the

information contained in the few large coefficients can be captured by a small number of random

linear projections [44], and the data can then be reconstructed in a computationally feasible

manner from these random projections [7, 20, 31].

Mathematically speaking, suppose that the data or signal of interest is organized as a vec-

tor x of length N , and the process of acquiring the signal x is approximately linear, which is

modeled using a linear transform matrix A of dimension M ×N . Then we obtain the measure-

ments y of dimension M as

y = Ax + z, (1.1)
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where z is additive noise in the signal acquisition system. Our goal is to reconstruct or estimate

the input signal x from the noisy linear measurements y, using knowledge of the measurement

matrix A and statistical information about the noise z. Because the measurements y usually

have a smaller dimension than x, the signal is acquired in a compressive manner, and thus we

call the process of reconstructing x compressive signal reconstruction.

In this dissertation, we explore compressive signal reconstruction methods, namely to re-

construct the input signal x from the noisy linear compressive measurements y.

1.2 Outline

The remainder of the dissertation is arranged as follows.

In Chapter 2, we review two recent popular compressive signal reconstruction frameworks

called generalized approximate message passing (GAMP) and approximate message passing

(AMP). GAMP and AMP enjoy the flexibility of providing different reconstruction strategies,

which inspires us to expand their capabilities in signal reconstruction.

In the last iterations of GAMP and AMP, some statistical information about the input sig-

nal is generated. Based on such statistical information, it is convenient to design various recon-

struction algorithms, and simultaneously predict the reconstruction quality. On the other hand,

although certain performance metrics are frequently used to assess the reconstruction quality

either because of their effectiveness or their mathematical advantages, other user-defined perfor-

mance metrics could also be evaluated based on specific practical needs. Therefore, we propose a

signal reconstruction algorithm that is optimal in the sense of user-defined performance metrics.

This metric optimal approach is described in Chapter 3.

Among the user-defined performance metrics, we find that minimizing the average `∞-norm

error is closely related to the Wiener filter, a simple linear estimator in signal processing,

which provides us interesting mathematical insight. In Chapter 4, we derive such mathematical

properties in detail and embed the `∞-norm error minimization in GAMP and AMP.

Considering that compressive signal reconstruction has an important role in the imaging

field, owing to its applications in seismic imaging, medical imaging, astronomy, and remote

sensing, we further study the possibility of applying the AMP framework to compressive imaging

in Chapter 5. AMP converts the compressive imaging problem to an image denoising problem

at each iteration, and therefore, by designing an effective image denoiser that is suitable for

AMP iterations, we come up with a compressive image reconstruction algorithm that is fast yet

outperforms the prior art in terms of both reconstruction quality and runtime.

In Chapter 6, a practical compressive imaging problem, compressive hyperspectral imaging,

is explored. The measurement matrix that models the hyperspectral imaging process is highly

structured and not i.i.d. Gaussian. However, AMP suffers from a divergence problem when
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the measurement matrix goes beyond i.i.d. Gaussian. To overcome the divergence problem

and maintain the reconstruction quality of the previously proposed AMP based algorithm, we

modify the algorithm to fit the compressive hyperspectral imaging problem.

Finally, in Chapter 7, we conclude the dissertation and discuss possible directions for future

work.

1.3 Notation

For the readers’ convenience, a brief summary of notations that are used in this dissertation

follows:

� x: input signal of interest, and this is the signal to be reconstructed;

� A: measurement matrix;

� y: measurements;

� z: additive noise in measurements;

� N : length of the input signal;

� M : number of measurements;

� q: output of scalar channels;

� v: noise in scalar channels produced by GAMP or AMP;

� t: iteration number;

� r: residual in GAMP or AMP;

� w: output of arbitrary scalar channels;

� u: noise in arbitrary scalar channels;

� m,n, l: dimensions of hyperspectral image cubes;

� (·)T : the transpose of a vector or a matrix;

� (·)i: the i-th component of a vector;

� ‖ · ‖0: the `0-norm of a vector, i.e., ‖x‖0 is the number of nonzeros in x;

� ‖ · ‖p: the `p-norm of a vector (0¡p¡∞), i.e., ‖x‖p = (
∑N

i=1 |xi|p)
1
p ;

3



� ‖ · ‖∞: the `∞-norm of a vector, i.e., ‖x‖∞ = maxi={1,2,...,N} |xi|;

� N (µ, σ2): Gaussian distribution with mean µ and variance σ2.
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Chapter 2

Review of Related Work

2.1 Basics of Compressive Signal Reconstruction

Let us first overview the mathematical justification of compressive signal reconstruction. Sup-

pose that a signal x of dimension N is K-sparse, i.e., the vector x contains at most K nonzeros

whereas the rest are zeros. Suppose further that the measurement matrix A satisfies the so-

called restricted isometry property (RIP) [20]. Specifically, the RIP is a condition for A such

that for some ε > 0 and for any K-sparse vector x,

(1− ε) < ‖Ax‖2
‖x‖2

< (1 + ε). (2.1)

In the noiseless case where y = Ax, there is no additive noise z as shown in equation (1.1), and

it has been shown that if the matrix A satisfies the restricted isometry property (RIP) [20],

then x can be exactly reconstructed from y with high probability by solving for

x̂ = arg min
x̃
‖x̃‖0 subject to Ax̃ = y. (2.2)

Surprisingly, the above nonconvex optimization problem can be relaxed to the following convex

optimization problem,

x̂ = arg min
x̃
‖x̃‖1 subject to Ax̃ = y. (2.3)

In a more practical setting where additive noise z in the measurements exists, x can be

reconstructed [106] by solving for

x̂ = arg min
x̃
‖x̃‖1 subject to ‖y −Ax̃‖22 ≤ σ2, (2.4)

where σ2 is the noise variance. Typically, equation (2.4) is solved by introducing a Lagrange
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multiplier λ,

x̂ = arg min
x̃

1

2σ2
‖y −Ax̃‖22 + λ‖x̃‖1. (2.5)

There exists many algorithms that solve for equation (2.5), such as basis pursuit denoising

(BPDN) [24], least absolute shrinkage and selection operator (LASSO) [108], and gradient

projection for sparse reconstruction (GPSR) [38].

In fact, the solution x̂ of equation (2.5) can be regarded as a maximum a-posteriori (MAP)

estimator [60]. To see this, suppose that the additive noise z is independent and identically

distributed (i.i.d.) Gaussian distributed, i.e.,

f(y|Ax) =

M∏

i=1

1√
2πσ2

exp

(
−(yi − (Ax)i)

2

2σ2

)
, (2.6)

where f(·) denotes probability density function and (·)i denotes the i-th component of a vector.

Suppose further that the signal x is i.i.d. Laplacian distributed, i.e.,

f(x) =
N∏

j=1

λ

2
exp (−λxj) . (2.7)

Under these assumptions, the MAP estimator x̂MAP is

x̂MAP = arg max
w

f(x|y) (2.8)

= arg max
w

f(x) · f(y|Ax)

= arg max
w

M∏

i=1

1√
2πσ2

exp

(
−(yi − (Ax)i)

2

2σ2

)
·
N∏

j=1

λ

2
exp (−λxj) (2.9)

= arg max
w
− 1

2σ2
‖y −Ax‖22 − λ‖x‖1 + constant (2.10)

= arg min
w

1

2σ2
‖y −Ax‖22 + λ‖x‖1,

where (2.10) is derived by taking the logarithm of (2.9). Note that the assumption of x being

Laplacian distributed is based on the assumption that x is sparse. It is also possible to assign

other types of prior distributions to x. When the prior distribution of x is not Laplacian, the

MAP estimator (2.8) is no longer a solution of equation (2.5). Therefore, solving for (2.8) be-

comes difficult, because the variables in the two probability density functions f(x) and f(y|Ax)

have different lengths, and the statistical connection between the input signal x and the mea-

surements y is mixed by the linear transform matrix A. The generalized approximate message

passing algorithm (GAMP) [78, 79] is an algorithmic framework that can efficiently approximate

the posterior distribution f(x|y). Moreover, approximate message passing (AMP) is a line of
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work by Donoho et al. [33] that coincides with a special setting of GAMP. In Chapters 3 and

6, we will describe our proposed compressive signal reconstruction algorithms based on GAMP

or AMP. Therefore, we overview GAMP and AMP below (Section 2.2).

One last remark before the overview of GAMP and AMP is that the signal x may not

always be sparse explicitly, but sparse in an appropriate basis. Suppose that the signal x is

sparse in a basis Ψ, i.e., x = Ψs, where Ψ ∈ RN×N and so s is sparse and of length N , then

the measurements y become y = Ax + z = AΨs + z. Consequently, reconstructing x from y

becomes reconstructing s from y, and we can use equation (2.3) or equation (2.8) as mentioned

above to solve for s, but we require that (AΨ) satisfies RIP.

2.2 Message Passing Algorithms

2.2.1 Generalized approximate message passing (GAMP)

Approximate message passing (AMP) can be regarded as a special case of generalized AMP

(GAMP). We first take a look at the GAMP algorithm, and AMP will follow easily.

GAMP considers the following problem model. Let

h = Ax, (2.11)

and the connection between measurements y and the vector h is characterized by a conditional

distribution,

fY|H(y|h) =

M∏

i=1

fY |H(yi|hi). (2.12)

Note that the system model in (2.11) and (2.12) is a generalized version of equation (1.1),

because the connection between y and Ax is not necessarily additive in (2.11) and (2.12). GAMP

is derived from belief Propagation (BP) [15], which is an iterative method used to compute the

marginals of a Bayesian network, i.e., the marginals f(xj |y) for j = {1, 2, . . . , N}. Consider the

bipartite graph, called a Tanner or factor graph, shown in Figure 2.1, where circles represent

random variables (called variable nodes), and related variables are connected through functions

(represented by squares, called factor nodes or function nodes) that indicate dependencies. In

standard BP, there are two types of messages passed through the nodes: messages from variable

nodes to factor nodes, mx→y, and messages from factor nodes to variable nodes, my→x. If we

denote the set of function nodes connected to the variable x by N(x), the set of variable nodes

connected to the function y by N(y), and the factor function at node y by Φy, then the two
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Figure 2.1: Tanner graph for relaxed belief propagation.

types of messages are defined as follows [15]:

mx→y =
∏

k∈N(x)\y

mk→x,

my→x =
∑

`∈N(y)\x

Φym`→y.

The basic BP idea described above can be applied to compressive sensing systems [76, 77]. In

the Tanner graph, an input vector x = (x1, x2, ..., xN )T is associated with the variable nodes

(input nodes), and the output vector y = (y1, y2, ..., yM )T is associated with the function nodes

(output nodes). If Aij 6= 0, then nodes xj and yi are connected to an edge (i, j), where the set

of such edges E is defined as E = {(i, j) : Aij 6= 0}.
In standard BP methods [9, 19, 50, 67], the distribution functions of xj and hi as well as the

channel distribution function fY |H(yi|hi) were set to be the messages passed along the graph, but

it is difficult to compute those distributions, making the standard BP method computationally

expensive. In [48], a simplified algorithm, called relaxed BP, was suggested. In this algorithm,

means and variances replace the distribution functions themselves and serve as the messages

passed through the nodes of the Tanner graph, greatly reducing the computational complexity.

In [77, 78, 83], this method was extended to a more general case where the channel fY |H is

not necessarily Gaussian. The algorithm is called generalized approximate message passing

(GAMP), and is summarized in Algorithm 1. In Algorithm 1, the estimate of x can be obtained

according to either MAP or minimum mean square error (MMSE) criteria. In this dissertation,

we focus on GAMP using an MMSE criterion, which is defined by functions Fi(·) and Gj(·) as
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follows,

Fi(p, ν
p) ,

∫
hexp(−fi(h))N (h; p, νp)dh∫
exp(−fi(h))N (h; p, νp)dh

, (2.13)

Gj(q, ν
q) ,

∫
xexp(−gj(x))N (x; q, νq)dx∫
exp(−gj(x))N (x; q, νq)dx

. (2.14)

Algorithm 1 GAMP [17]

Inputs: ∀i, j: Fi(·), Gj(·), xj(1), νxj (1) , aij , Tmax ≥ 1, ε ≥ 0, β0 ∈ (0, 1]
Outputs: ∀j: xj(t+ 1), νxj (t+ 1)
Initialization: ∀i: si(0) = 0, t = 1

for t = 1, . . . , Tmax do
1. ∀i : νpi (t) =

∑N
j=1 |aij |2νxj (t)

2. ∀i : pi(t) =
∑N

j=1 aijxj(t)− ν
p
i (t)ri(t− 1)

3. ∀i : νhi (t) = νpi (t)F ′i (pi(t), ν
p
i (t))

4. ∀i : hi(t) = Fi(pi(t), ν
p
i (t))

5. ∀i : νri (t) =
(

1− νhi (t)

νpi (t)

)
1

νpi (t)

6. ∀i : ri(t) = hi(t)−pi(t)
νpi (t)

7. ∀j : νqj (t) = 1∑M
i=1 |aij |2νri (t)

8. ∀j : qj(t) = xj(t) + νqj (t)
∑M

i=1 a
∗
ijri(t)

9. ∀j : νxj (t+ 1) = νqj (t)G′j(qj(t), ν
q
j (t))

10. ∀j : xj(t+ 1) = Gj(qj(t), ν
q
j (t))

end for

At each iteration of Algorithm 1, the compressive sensing system in (2.11) and (2.12) is

converted to scalar Gaussian channels in Line 8,

qj(t) = xj(t) + vj(t), ∀j = 1, 2, . . . , N, (2.15)

where the Gaussian noise satisfies vj(t) ∼ N (0, νqj (t)).
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2.2.2 Approximate message passing (AMP)

A special yet frequently discussed setting in (1.1) is that the measurement noise is white Gaus-

sian, which is equivalent to the conditional distribution in (2.12) being i.i.d. Gaussian as shown

in (2.6). In this setting, GAMP reduces to approximate message passing (AMP) [33]. AMP

proceeds iteratively according to

xt+1 = ηt(A
T rt + xt), (2.16)

rt = y −Axt +
1

R
rt−1〈η′t−1(AT rt−1 + xt−1)〉, (2.17)

where R = M/N represents the measurement rate, ηt(·) is a denoising function at the t-th

iteration, η′t(q) = ∂
∂qηt(q), and 〈u〉 = 1

N

∑N
i=1 ui for some vector u = (u1, u2, . . . , uN ). The last

term in equation (2.17) is called the “Onsager reaction term” [33, 107] in statistical physics,

and the corresponding Onsager reaction term in Algorithm 1 is the νpi (t)ri(t− 1) term in Step

2.
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Chapter 3

Signal Reconstruction with

Arbitrary Error Metrics

We are now ready to introduce our proposed compressive signal reconstruction algorithms. In

this chapter, we describe a reconstruction algorithm that achieves application-oriented signal

reconstruction performance. This algorithm was proposed in Tan et al. [96, 99, 100]. Note that

we referred to the algorithm by Rangan [77] as relaxed belief propagation in previous publica-

tions [96, 99, 100], whereas in this chapter we refer to the algorithm as “GAMP” for consistency

throughout the dissertation.

In this chapter, we consider the system model defined in (2.11) and (2.12) where the input

signal x ∈ RN is independent and identically distributed (i.i.d.), and the measurement matrix

A ∈ RM×N is sparse and known (typically M < N). Our goal is to reconstruct x from y and A.

When we take some algorithm to reconstruct signals from their compressive measurements, the

performance of the reconstruction algorithm is often characterized by some error metric that

quantifies the distance between the estimated and the original signals. For a signal x and its

estimate x̂, both of length N , the error between them is the summation over the component-wise

errors,

D(x̂,x) =

N∑

j=1

d(x̂j , xj). (3.1)

For example, if the metric is absolute error, then d(x̂j , xj) = |x̂j − xj |; for squared error,

d(x̂j , xj) = (x̂j − xj)2.

Squared error is one of the most popular error metrics in various problems, due to many of

its mathematical advantages. For example, minimum mean squared error (MMSE) estimation

provides both variance and bias information about an estimator [45], and in the Gaussian case
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it is linear and thus often easy to implement [60]. However, there are applications where MMSE

estimation is inappropriate. In medical image reconstruction, for example, it is important to

obtain correct diagnoses in computed tomography scans and magnetic resonance imaging, and

the rate of correct diagnoses may be an error metric of interest rather than the squared error.

Moreover, MMSE estimation is sensitive to outliers [28, 119]. Therefore, alternative error metrics

can be used instead.

In this chapter, we describe an algorithm that reconstructs signals by minimizing the average

error metric of interest.

3.1 Related Work

As mentioned above, squared error is most commonly used as the error metric in estimation

problems given by (2.6). Mean-squared optimal analysis and algorithms were introduced in [9,

46–48, 81] to estimate a signal from measurements corrupted by Gaussian noise; in [49, 77, 78],

further discussions were made about the circumstances where the output channel is arbitrary,

while, again, the MMSE estimator was put forth. Another line of work, based on a greedy

algorithm called orthogonal matching pursuit, was presented in [71, 109] where the mean squared

error decreases over iterations. Absolute error is also under intense study in signal estimation.

For example, an efficient sparse recovery scheme that minimizes the absolute error was provided

in [11, 55]; in [27], a fundamental analysis was offered on the minimal number of measurements

required while keeping the estimation error within a certain range, and absolute error was one of

the metrics concerned. Support recovery error is another metric of great importance, for example

because it relates to properties of the measurement matrices [118]. The authors of [110, 117, 118]

discussed the support error rate when recovering a sparse signal from its noisy measurements;

support-related performance metrics were applied in the derivations of theoretical limits on

the sampling rate for signal recovery [1, 85]. The readers may notice that previous work only

paid attention to limited types of error metrics. What if absolute error, cubic error, or other

non-standard metrics are required in a certain application?

Therefore, (i) we suggest a pointwise Bayesian estimation algorithm that minimizes an

arbitrary additive error metric; (ii) we prove that the algorithm is optimal; (iii) we study

the fundamental information-theoretic performance limit of estimation for a given metric; (iv)

we derive the performance limits for minimum mean absolute error, minimum mean support

error, and minimum mean weighted-support error estimators, and obtain the receiver operating

characteristic (ROC) of the modeled system by weighted-support error. This algorithm is based

on the assumption that GAMP [78] converges to a set of degraded scalar Gaussian channels [46,

47, 49, 81]. GAMP with the MMSE criterion is well-known to be optimal for the squared error,

while we further show that GAMP can do more – because the sufficient statistics are given,
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other additive error metrics can also be minimized with one more simple and fast step. This is

convenient for users who desire to recover the original signal with a non-standard additive error

metric. Simulation results show that our algorithm outperforms algorithms such as GAMP [77],

which is optimal for squared error, and compressive sampling matching pursuit (CoSaMP) [71],

a greedy reconstruction algorithm. Moreover, we compare our algorithm with the suggested

theoretical limits for minimum mean absolute error (MMAE), minimum mean support error

(MMSuE), and minimum mean weighted-support error (MMWSE), and illustrate that our

algorithm is optimal.

3.2 Estimation Algorithm

Recall that in Chapter 2 the GAMP algorithm generates two sequences, qj(t) and νqj (t), in equa-

tion (2.15), where t ∈ Z+ denotes the iteration number. Under the assumptions that the signal

dimension N → ∞, the iteration number t → ∞, and the ratio M/N is fixed, the sequences

qj(t) and νqj (t) converge to sufficient statistics for the compressive measurements y (2.12).

More specifically, in the large system limit, the conditional distribution f(xj |qj(t), νqj (t)) con-

verges to the conditional distribution f(xj |y), where qj(t) can be regarded as a Gaussian-noise-

corrupted version of xj , and νqj (t) is the noise variance. It has been shown [77] that νqj (t))

converges to a fixed point that satisfies Tanaka’s equation, which has been analyzed in detail

(cf. [33, 46, 47, 67, 78, 81, 105]). We define the limits of the two sequences,

lim
t→∞

qj(t) = qj ,

lim
t→∞

νqj (t) = ν,

for j = 1, 2, . . . , N . We now simplify equation (2.15) as follows,

qj = xj + vj , (3.2)

where vj ∼ N (0, ν) for j = 1, 2, . . . , N .

The structure of our metric-optimal algorithm is illustrated in the dashed box in Figure 3.1.

The inputs of the algorithm are: (i) a distribution function fX(x), the prior of the original

input x; (ii) a vector q = (q1, q2, ..., qN ), the outputs of the scalar Gaussian channels computed

by GAMP [78]; (iii) a scalar ν, the variance of the Gaussian noise in (3.2); and (iv) an error

metric function D(x̂,x) specified by the user. The vector q and the scalar ν are the outputs of

GAMP [78], and in particular we generate q and ν using the software package “GAMP” [80].

Because the scalar channels have additive Gaussian noise, and the variances of the noise are
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Figure 3.1: The structure of the metric-optimal estimation algorithm.

all ν, we can compute the conditional probability density function fX|Q(x|q) from Bayes’ rule:

fX|Q(x|q) =
fQ|X(q|x)fX(x)

fQ(q)

=
fQ|X(q|x)fX(x)∫
fQ|X(q|x)fX(x)dx

, (3.3)

where

fQ|X(q|x) =
1√

(2πν)N
exp

(
−‖q− x‖22

2ν

)
.

Given an error metricD(x̂,x), the optimal estimand x̂opt is generated by minimizing the con-

ditional expectation of the error metric E[D(x̂,x)|q], which is easy to compute using fX|Q(x|q):

E[D(x̂,x)|q] =

∫
D(x̂,x)fX|Q(x|q)dx.

Then,

x̂opt = arg min
x̂
E[D(x̂,x)|q]

= arg min
x̂

∫
D(x̂,x)fX|Q(x|q)dx. (3.4)

The conditional probability fX|Q(x|q) is separable, because the parallel scalar Gaussian chan-

nels (3.2) are separable and fX(x) is i.i.d. Moreover, the error metric function D(x̂,x) (3.1) is

also separable. Therefore, the problem reduces to scalar estimation [60],

x̂opt,j = arg min
x̂j

E[d(x̂j , xj)|qj ]

= arg min
x̂j

∫
d(x̂j , xj)fxj |qj (xj |qj)dxj , (3.5)
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for j = 1, 2, . . . , N . Equation (4.14) minimizes a single-variable function. In Section 3.4, we

show how to perform this minimization in three example cases.

3.3 Theoretical Results

Having discussed the algorithm, we now provide a theoretical justification for its performance.

Claim 1 Given the system model described by (2.11), (2.12) and an error metric D(x̂,x) of

the form defined by (3.1), as the signal dimension N →∞ and the measurement ratio M/N is

fixed, the optimal estimand of the input signal is given by

x̂opt = arg min
x̂
E [D(x̂,x)|q] ,

where the vector entries q = (q1, q2, . . . , qN ) are the outputs of the scalar Gaussian channels

(3.2).

The rationale for Claim 1 is as follows. Because the probability density function fXj |Y(xj |y)

is statistically equivalent to fXj |Qj (xj |qj) in the large system limit, once we know the value of

ν, estimating each xj from all channel outputs y = (y1, y2, ..., yM ) is equivalent to estimating xj

from the corresponding scalar channel output qj . GAMP [78] calculates the sufficient statistics

qj and ν. Therefore, an estimator based on minimizing the conditional expectation of the error

metric, E [D(x̂,x)|q], provides an asymptotically optimal result.

Claim 1 states that, in the large system limit, the estimator satisfying (4.13) is optimal,

because it minimizes the conditional expectation of the error metric. The key point in the

estimation problem is to obtain the posterior fXj |Y. Fortunately, GAMP provides an asymp-

totically optimal method to decouple the mixing channels and thus an equivalent posterior

fXj |Qj (xj |qj) can be computed easily, and our algorithm utilizes this convenient feature.

Following Claim 1, we can compute the minimum expected error achievable by any estima-

tion algorithm for any additive error metric D(x̂opt,x). This minimum expected error is the

fundamental information-theoretic performance limit of interest in this problem; no estimation

algorithm can out-perform this limit. At the same time, we will see in Section 3.4 that, for three

example error metrics, our BP-based algorithm matches the performance of the information-

theoretic limit, and is thus optimal.

Claim 2 For a system modeled by (2.11), (2.12), as the signal dimension N → ∞, the mini-

mum mean user-defined error (MMUE) is given by

MMUE(fX, ν) =

∫

R(Q)

(∫

R(X)
D(x̂opt,x)

(
1√

(2πν)N
exp

(
−‖q− x‖2

2ν

))
fX(x)dx

)
dq, (3.6)
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where the optimal estimand x̂opt is determined by (4.13), R(·) represents the range of a variable,

and ν is the variance of the noise of the scalar Gaussian channel (3.2).

Equation (3.6) can be derived in the following steps.

MMUE(fX, ν) = E[D(x̂opt,x)]

=

∫

R(Q)
EQ

[
E[D(x̂opt,x)|q]

]
fQ(q)dq

=

∫

R(Q)
E[D(x̂opt,x)|q]fQ(q)dq

=

∫

R(Q)

(∫

R(X)
D(x̂opt,x)fX|Q(x|q)dx

)
fQ(q)dq

=

∫

R(Q)

(∫

R(X)
D(x̂opt,x)

fQ|X(q|x)fX(x)

fQ(q)
dx

)
fQ(q)dq

=

∫

R(Q)

(∫

R(X)
D(x̂opt,x)fQ|X(q|x)fX(x)dx

)
dq

=

∫

R(Q)
(

∫

R(X)
D(x̂opt,x)

1√
(2πν)N

exp

(
−‖q− x‖2

2ν

)
fX(x)dx)dq.

Using both claims, we further analyze the estimation performance limits for three example

error metrics in Sections 3.4.

3.4 Examples

3.4.1 Absolute error

Because the MMSE is the mean of the conditional distribution, the outliers in the set of data

may corrupt the estimation, and in this case the minimum mean absolute error (MMAE) is a

good alternative. For absolute error, dAE(x̂j , xj) = |x̂j−xj |, and we have the following corollary

describing the performance limit of an MMAE estimator, where the proof is given in Appendix

A.

Corollary 1 For a system modeled by (2.11), (2.12), as the signal dimension N → ∞, the

minimum mean absolute error (MMAE) estimator achieves

MMAE(fX, ν) = N

∫ +∞

−∞

(∫ x̂j,MMAE

−∞
(−xj)fXj |Qj (xj |qj)dxj +

∫ +∞

x̂j,MMAE

xjfXj |Qj (xj |qj)dxj

)
fQj (qj)dqj ,

(3.7)
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where xj (respectively, qj) is the input (respectively, output) of the scalar Gaussian channel

(3.2), x̂j,MMAE satisfies
∫ +∞
x̂j,MMAE

fXj |Qj (xj |qj)dxj = 1
2 , and fXj |Qj (xj |qj) is a function of fXj

following (3.3).

3.4.2 Support recovery error

In some applications in compressive sensing, correctly estimating the locations where the data

has nonzero values is almost as important as estimating the exact values of the data; it is a

standard model selection error criterion [118]. The process of estimating the nonzero locations

is called support recovery. Support recovery error is defined as follows, and this metric function

is discrete,

dsupport(x̂j , xj) = xor(x̂j , xj),

where

xor(x̂j , xj) =





0, if xj = 0 and x̂j = 0

0, if xj 6= 0 and x̂j 6= 0

1, if xj = 0 and x̂j 6= 0

1, if xj 6= 0 and x̂j = 0

.

Corollary 2 For a system modeled by (2.11), (2.12), where fX is an i.i.d. sparse Gaussian

prior such that Pr(Xj 6= 0) = p and Xj 6= 0 ∼ N (0, σ2), as the signal dimension N → ∞, the

minimum mean support error (MMSuE) estimator achieves

MMSuE(fX, ν) = N · (1− p) · erfc

(√
τ

2ν

)
+N · p · erf

(√
τ

2(σ2 + ν)

)
, (3.8)

where erf(·) and erfc(·) are the error function and complementary error function, respectively,

and

τ = 2 · σ
2 + ν

σ2/ν
· ln

(
(1− p)

√
σ2/ν + 1

p

)
.

Corollary 2 is proved in Appendix B.

3.4.3 Weighted-support error

In Section 3.4.2, we put equal weights on the error patterns (i) x̂j 6= 0 while xj = 0; and (ii)

x̂j = 0 while xj 6= 0. In this section, we further put unequal weights on these two error patterns,

because in many applications one of the error patterns is more important than the other. For

example, suppose that xj 6= 0 means a patient has some disease and x̂j = 0 means the diagnosis
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shows no disease, then the error pattern x̂j = 0 while xj 6= 0 is more important than the other

error pattern and needs to be avoided. Therefore, more weight can be put on the error pattern

x̂j = 0 while xj 6= 0. We first define false positive error dFP as

dFP(x̂j , xj) = d(x̂j = 1, xj = 0) = 1,

and false negative error dFN as

dFN(x̂j , xj) = d(x̂j = 0, xj = 1) = 1.

Else the patterns coincide,

d(x̂j = 0, xj = 0) = d(x̂j = 1, xj = 1) = 0.

We then define weighted-support error as

dw support(x̂j , xj) = β · dFP(x̂j , xj) + (1− β) · dFN(x̂j , xj), (3.9)

where 0 ≤ β ≤ 1, and we set dw support(x̂j , xj) as the error metric that we want to minimize. The

false positive rate (or false alarm rate) is defined as Pr(x̂j 6= 0|xj = 0), and the false negative

rate (or misdetection rate) is defined as Pr(x̂j = 0|xj 6= 0).

Corollary 3 For a system modeled by (2.11), (2.12), where fX is an i.i.d. sparse Gaussian

prior such that Pr(Xj 6= 0) = p and Xj 6= 0 ∼ N (0, σ2), as the signal dimension N →∞,

1. The minimum mean weighted-support error (MMWSE) estimator achieves

MMWSE(fX, ν) = Nβ(1− p) · erfc

(√
τ ′

2ν

)
+N(1− β)p · erf

(√
τ ′

2(σ2 + ν)

)
, (3.10)

where

τ ′ = 2 · σ
2 + ν

σ2/ν
· ln

(
β(1− p)

√
σ2/ν + 1

(1− β)p

)
.

2. The false positive rate is

Pr(x̂j 6= 0|xj = 0) = erfc

(√
τ ′

2ν

)
, (3.11)
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and the false negative rate is

Pr(x̂j = 0|xj 6= 0) = erf

(√
τ ′

2(σ2 + ν)

)
. (3.12)

The proof of Corollary 3 is provided in Appendix C.

It is shown in Corollary 3 that Pr(x̂j 6= 0|xj = 0) and Pr(x̂j = 0|xj 6= 0) vary when the value

of β varies. Moreover, Comparing equation (3.10) to (3.8) in Corollary 2, the only difference is

that τ is replaced by τ ′, which is the decision threshold that determines whether an estimand is

zero or nonzero. That said, putting different weights on false positive error and false negative

error is analogous to tuning the decision threshold, and thus trading off between the false alarm

rate and the misdetection rate [60]. A receiver operating characteristic (ROC) curve [60] is

shown in Section 6.4.

3.5 Numerical Results

Some numerical results are shown in this section to illustrate the performance of our estimation

algorithm when minimizing a user-defined error metric. The Matlab implementation of our

algorithm can be found at http://people.engr.ncsu.edu/dzbaron/software/arb_metric/.

We test our estimation algorithm on two linear systems modeled by (2.11) and (2.12):

(i) Gaussian input and Gaussian channel; (ii) Weibull input and Poisson channel. In both

cases, the input’s length N is 10,000, and its sparsity rate is 3%, meaning that the entries

of the input vector are nonzero with probability 3%, and zero otherwise. The matrix A we

use is Bernoulli(0.5) distributed, and is normalized to have unit-norm rows. In the first case,

the nonzero input entries are N (0, 1) distributed, and the Gaussian noise is N (0, 3 · 10−4)

distributed, i.e., the signal to noise ratio (SNR) is 20 dB. In the second case, the nonzero input

entries are Weibull distributed,

f(xj ;λ, k) =




k
λ

(xj
λ

)k−1
e−(xj/λ)k xj ≥ 0

0 xj < 0
,

where λ = 1 and k = 0.5. The Poisson channel is

fY |W (yi|wi) =
(αwi)

yie−(αwi)

yi!
, for all i ∈ {1, 2, . . . ,M},

where the scaling factor of the input is α = 100.

In order to illustrate that our estimation algorithm is suitable for reasonable error metrics,
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Figure 3.2: Comparison of the metric-optimal estimation algorithm, GAMP, and CoSaMP. Sparse

Gaussian input and Gaussian channel; sparsity rate = 3%; input length N = 10, 000; SNR = 20 dB. (a)

D(x̂,x) =
∑N

j=1 |x̂j − xj |0.5; (b) D(x̂,x) =
∑N

j=1 |x̂j − xj |; and (c) D(x̂,x) =
∑N

j=1 |x̂j − xj |1.5.

Number of measurements M
1000 2000 3000 4000 5000 6000 7000

E
rr

or

102

103

GAMP
CoSaMP
Metric-optimal
Error

0.5

Error
1
(MAE)

Error
1.5

Figure 3.3: Comparison of the metric-optimal estimation algorithm, GAMP, and CoSaMP. The “MAE”

and the “Error1.5” lines for “CoSaMP” appear beyond the scope of the vertical axis. Sparse Weibull input

and Poisson channel; sparsity rate = 3%; input length N = 10, 000; input scaling factor α = 100.

we considered absolute error and two other non-standard metrics:

Errorp =

N∑

j=1

|x̂j − xj |p,

where p = 0.5 or 1.5.

We compare our algorithm with GAMP [78] and CoSaMP [71] algorithms. In Figure 3.2

and Figure 3.3, lines marked with “metric-optimal” present the errors of our estimation algo-

rithm, and lines marked with “GAMP” (respectively, “CoSaMP”) show the errors of the GAMP

(respectively, CoSaMP) algorithm. Each point in the figure is an average of 100 experiments

with the same parameters. Because the Poisson channel is not an additive noise channel and
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Figure 3.4: Comparisons of the metric-optimal estimators and the corresponding theoretical lim-

its (3.7), (3.8), and (3.10). The corresponding two lines are on top of each other. Sparse Gaussian

input and Gaussian channel; sparsity rate = 3%; input length N = 10, 000; SNR = 20 dB. (a) Absolute

error; (b) Support error; and (c) Weighted-support error.
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Figure 3.5: The ROC curve obtained by setting weighted-support error as the error metric. Sparse

Gaussian input and Gaussian channel; sparsity rate = 3%; input length N = 10, 000; SNR = 20 dB.

is not suitable for CoSaMP, the “MAE” and the “Error1.5” lines for “CoSaMP” in Figure 3.3

appear beyond the scope of the vertical axis. It can be seen that our metric-optimal algorithm

outperforms the other two methods.

To demonstrate the theoretical analysis of our algorithm in Sections 3.4, we compare our

MMAE estimation results with the theoretical limit (3.7) in Figure 3.4a, where the integra-

tions are computed numerically. In Figure 3.4b, we compare our MMSuE estimator with the

theoretical limit (3.8), where the value of ν is acquired numerically from GAMP [80] with 20

iterations. In Figure 3.4c, our MMWSE estimator and its theoretical limit (3.10) are compared,

where we fix the weight β = 0.3, and obtain the value of ν as in Figure 3.4b. In all three figures,

each point on the “metric-optimal” line is generated by averaging 40 experiments with the same

parameters. It is shown in all figures that the two lines are on top of each other. Therefore our

estimation algorithm reaches the corresponding theoretical limits and is optimal.

Figure 3.5 illustrates the ROC curve obtained by setting the weighted-support error (3.9) as
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the error metric. We vary the value of β in (3.9) from 0 to 1, and compute the false positive rate

as well as the false negative rate from (3.11) and (3.12). The ROC curve is a Pr(x̂j 6= 0|xj =

0) (3.11) versus Pr(x̂j 6= 0|xj 6= 0) plot, where Pr(x̂j 6= 0|xj 6= 0) is called the true positive rate,

and Pr(x̂j 6= 0|xj 6= 0) = 1 − Pr(x̂j = 0|xj 6= 0) (3.12). In order to obtain different curves, we

tune the number of measurements M , while keeping the sparsity rate, input length, and the

SNR fixed. It can be seen that for the same level of false positive rate, a greater number of

measurements achieves a higher true positive rate.

3.6 Conclusion

In this chapter, we introduced a pointwise estimation algorithm that deals with arbitrary ad-

ditive error metrics in noisy compressive sensing. We verified that the algorithm is optimal in

the large system limit, and provided a general method to compute the minimum expected error

achievable by any estimation algorithm for a user-defined additive error metric. We started with

the scalar Gaussian channel model of GAMP and extended it to a method that is applicable

to any user-defined additive error metric. We discussed three error metric examples, absolute

error, support error, and weighted-support error, and gave the theoretical performance lim-

its for them. We further obtained the ROC curve for the modeled system by minimizing the

weighted-support error. We also illustrated numerically that our algorithm reaches the three

example theoretical limits, and outperforms GAMP and CoSaMP methods.
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Chapter 4

Signal Reconstruction with Infinity

Norm Error

Continuing our topic in Chapter 3 on signal reconstruction with arbitrary error metrics, we

focus on a specific error metric in this chapter, `∞-norm error, also called worst-case error

or infinity norm error. The results in this chapter appeared in Tan et al. [97, 98]. In contrast

to the `2-norm error, which ensures that the reconstructed signal has low square error on

average, the `∞-norm error ensures that every reconstructed signal component is close to the

corresponding original signal component. In problems such as image and video compression [30]

where the reconstruction quality at every signal component is important, it might be better to

optimize for `∞-norm error. Our interest in the `∞-norm error is also motivated by applications

including wireless communications [94], group testing [42], and trajectory planning in control

systems [34], where we want to decrease the worst-case sensitivity to noise.

4.1 Gaussian Mixture Source

The Gaussian distribution is widely used to describe the probability densities of various types

of data, owing to its advantageous mathematical properties [73]. It has been shown that non-

Gaussian distributions can often be sufficiently approximated by an infinite mixture of Gaus-

sians [2], so that the mathematical advantages of the Gaussian distribution can be leveraged

when discussing non-Gaussian signals [2, 13, 95, 112, 113].

The main results in this chapter are based on the assumption that the input signal x is

generated by an independent and identically distributed (i.i.d.) Gaussian mixture source,

xi ∼
K∑

k=1

sk · N (µk, σ
2
k) =

K∑

k=1

sk√
2πσ2

k

e
− (xi−µk)

2

2σ2
k , (4.1)
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where the subscript (·)i denotes the i-th component of a sequence (or a vector), µ1, µ2, . . . , µK

(respectively, σ2
1, σ2

2, . . .,σ2
K) are the means (respectively, variances) of the Gaussian compo-

nents, and 0 < s1, s2, . . . , sK < 1 are the probabilities of the K Gaussian components. Note

that
∑K

k=1 sk = 1. A special case of the Gaussian mixture is Bernoulli-Gaussian,

xi ∼ s · N (µx, σ
2
x) + (1− s) · δ(xi), (4.2)

for some 0 < s < 1, µx, and σ2
x, where δ(·) is the delta function [73]. The zero-mean Bernoulli-

Gaussian model is often used in sparse signal processing [20, 31, 49, 50, 76, 77, 93, 111].

4.2 Problem Setting

We start our analysis on minimizing `∞-norm error for parallel Gaussian channels, and the

results can be extended to compressive sensing models (1.1). In parallel Gaussian channels [13,

95], we consider

w = x + u, (4.3)

where w,x,u ∈ RN are the output signal, the input signal, and the additive white Gaussian

noise (AWGN), respectively. The AWGN channel can be described by the conditional distribu-

tion

fW|X(w|x) =
N∏

i=1

fW |X(wi|xi) =
N∏

i=1

1√
2πσ2

u

exp

(
−(wi − xi)2

2σ2
u

)
, (4.4)

where σ2
u is the variance of the Gaussian noise. Note that we use different notations in (4.4)

from the notations in (2.15) to emphasize that the parallel Gaussian channels we consider in

this chapter do not necessarily come from GAMP or AMP.

Our goal is to reconstruct or estimate the original input signal x from the parallel Gaussian

channel outputs w in (4.3). To evaluate how accurate the reconstruction process is, we quantify

the `∞-norm error between x and its estimate x̂,

‖x̂− x‖∞ = max
i∈{1,...,N}

|x̂i − xi|;

this error metric helps prevent any significant errors during the reconstruction process. The

estimator that minimizes the expected value of ‖x̂− x‖∞ is called the minimum mean `∞-

norm error estimator. We denote this estimator by x̂`∞ , which can be expressed as

x̂`∞ = arg min
x̂
E [‖x̂− x‖∞] . (4.5)
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4.3 Related Work

Gaussian mixtures are widely used to model various types of signals, and a number of signal

reconstruction methods have been introduced to take advantage of the Gaussian mixture distri-

bution. For example, an infinite Gaussian mixture model was proposed in [2] to represent real

data such as images, and a denoising scheme based on local linear estimators was developed to

reconstruct the original data. A similar algorithm based on an adaptive Wiener filter was ap-

plied to denoise X-ray CT images [95], where a Gaussian mixture model was utilized. However,

these works only quantified the `2-norm error of the denoising process. Signal reconstruction

problems with `∞-norm error have not been well-explored, but there have been studies on gen-

eral properties of the `∞-norm. For example, in Clark [26], the author developed a deductive

method to calculate the distribution of the greatest element in a finite set of random variables;

and Indyk [54] discussed how to find the nearest neighbor of a point while taking the `∞-norm

distance into consideration.

4.4 Main Results

For parallel Gaussian channels (4.3), the minimum mean squared error estimator, denoted

by x̂`2 , is achieved by the conditional expectation E[x|w]. If the input signal x is i.i.d. Gaussian

(not a Gaussian mixture), i.e., xi ∼ N (µx, σ
2
x), then the estimate

x̂`2 = E[x|w] =
σ2
x

σ2
x + σ2

u

(w − µx) + µx (4.6)

achieves the minimum mean squared error, where σ2
u is the variance of the Gaussian noise u

in (4.3), and we use the convention that adding a scalar to (respectively, subtracting a scalar

from) a vector means adding this scalar to (respectively, subtracting this scalar from) every

component of the vector. This format in (4.6) is called the Wiener filter in signal processing [120].

It has been shown by Sherman [88, 89] that, besides the `2-norm error, the linear Wiener filter

is also optimal for all `p-norm errors (p ≥ 1), including the `∞-norm error. Surprisingly, we

find that, if the input signal is generated by an i.i.d. Gaussian mixture source, then the Wiener

filter asymptotically minimizes the expected `∞-norm error.

Before providing the result for the Gaussian mixture input case, which is mathematically

involved, we begin with an analysis of the simpler Bernoulli-Gaussian input case.

Theorem 1 In parallel Gaussian channels (4.3), if the input signal x is generated by an i.i.d.
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Bernoulli-Gaussian source defined in (4.2), then the Wiener filter

x̂W,BG =
σ2
x

σ2
x + σ2

u

(w − µx) + µx (4.7)

asymptotically achieves the minimum mean `∞-norm error. More specifically,

lim
N→∞

E [‖x− x̂W,BG‖∞]

E [‖x− x̂`∞‖∞]
= 1,

where x̂`∞ satisfies (4.5).

Theorem 1 is proved in Appendix D. The proof combines concepts in typical sets [28]

and a result by Gnedenko [43], which provided asymptotic properties of the maximum of a

Gaussian sequence. The main idea of the proof is to show that with overwhelming probability the

maximum absolute error satisfies ‖x− x̂‖∞ = |xi− x̂i|, where i ∈ I = {i : xi ∼ N (µx, σ
2
x)}, i.e.,

I is the index set that includes all the Gaussian components of the vector x, and excludes all the

zero components of x. Therefore, minimizing ‖x− x̂‖∞ is equivalent to minimizing ‖xI− x̂I‖∞,

where (·)I denotes a subvector with entries in the index set I. Because the vector xI is i.i.d.

Gaussian, the Wiener filter minimizes ‖xI−x̂I‖∞ [88, 89]; hence the Wiener filter minimizes ‖x−
x̂‖∞ with overwhelming probability. On the other hand, the cases where ‖x− x̂‖∞ = |xi − x̂i|
and i /∈ I are rare, the mean `∞-norm error of the Wiener filter barely increases, and so the

Wiener filter asymptotically minimizes the expected `∞-norm error.

Having discussed the Bernoulli-Gaussian case, let us proceed to the Gaussian mixture case

defined in (4.1). Here the maximum absolute error between x and the estimate x̂ satisfies ‖x−
x̂‖∞ = |xi − x̂i|, where i ∈ I ′ = {i : xi ∼ N (µm, σ

2
m)}, and m = arg maxk∈{1,2,...,K} σ

2
k. That is,

the maximum absolute error between x and x̂ lies in an index that corresponds to the Gaussian

mixture component with greatest variance.

Theorem 2 In parallel Gaussian channels (4.3), if the input signal x is generated by an i.i.d.

Gaussian mixture source defined in (4.1), then the Wiener filter

x̂W,GM =
σ2
m

σ2
m + σ2

u

(w − µm) + µm (4.8)

asymptotically achieves the minimum mean `∞-norm error, where m = arg maxk∈{1,2,...,K} σ
2
k.

More specifically,

lim
N→∞

E [‖x− x̂W,GM‖∞]

E [‖x− x̂`∞‖∞]
= 1,

where x̂`∞ satisfies (4.5).

The proof of Theorem 2 is given in Appendix E. We note in passing that the statements in
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Theorems 1 and 2 do not hold for `p-norm error (0 < p < ∞). Because there is a one to one

correspondence between the parameters (µk and σ2
k) of a Gaussian mixture component and its

corresponding Wiener filter, if a Wiener filter is optimal in the `p error sense for any of the

Gaussian mixture components, then it is suboptimal for the rest of the mixture components.

Therefore, any single Wiener filter is suboptimal in the `p error sense for any Gaussian mixture

signal comprising more than one Gaussian component.

Remark 1 Theorems 1 and 2 can be extended to compressive signal reconstruction problems.

Recall that GAMP and AMP can decouple the compressive sensing system in (2.11) and (2.12)

to an equivalent set of parallel Gaussian channels in (3.2). Therefore, when the input signal x

is generated by an i.i.d. Gaussian mixture source, by applying the Wiener filter to qj in (3.2),

we can obtain the estimate that minimizes the `∞-norm error of the compressive signal recon-

struction process.

4.5 Practical `p-Norm Minimization

We have now proved that, when the input signal is i.i.d. Gaussian mixture, the Wiener filter

provides asymptotically optimal mean `∞-norm error in parallel scalar Gaussian channels and

linear mixing systems. However, the results are asymptotic in nature, and in practice the `∞-

norm error minimizer must be estimated. In this section, we show some numerical results for

a heuristic algorithm that uses an `p-norm error minimizer to estimate the `∞-norm error

minimizer, where we apply the metric-optimal procedure from Chapter 3. Numerical results

show that, with a finite signal length N , the `p-norm minimizer [100] has lower `∞-norm error

than the Wiener filter.

4.5.1 Parallel scalar Gaussian channels

The channels wi = xi+ui for i ∈ {1, 2, . . . , N} are separable from each other. If the error metric

is additive (3.1) and thus also separable, then estimating the input signal x from the channel

outputs w can be reduced to scalar reconstruction (estimating xi from wi), which is simple to

implement in a computationally efficient manner. However, the `∞-norm error only considers

the component with greatest absolute value, and does not have an additive form (3.1). Recall

that the definition of the `p-norm error between x̂ and x is

‖x̂− x‖p =


 ∑

i∈{1,...,N}

|x̂i − xi|p



1/p

.
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This type of error is closely related to our definition of the additive error metric (3.1). We define

Dp(x̂,x) =
N∑

i=1

|x̂i − xi|p = ‖x̂− x‖pp, (4.9)

and let x̂p denote the estimate that minimizes the conditional expectation of Dp(x̂,x), i.e.,

x̂p = arg min
x̂
E[Dp(x̂,x)|w]

= arg min
x̂
E[‖x̂− x‖pp|w]. (4.10)

Because scalar channels are separable, equation (4.10) reduces to a scalar reconstruction,

x̂p,i = arg min
x̂i

E[|x̂i − xi|p|wi]

= arg min
x̂i

∫
|x̂i − xi|pf(xi|wi)dxi (4.11)

for i ∈ {1, 2, ..., N}, where f(xi|wi) can be calculated using Bayes’ rule,

f(xi|wi) =
f(wi|xi)f(xi)∫
f(wi|xi)f(xi)dxi

, (4.12)

where f(wi|xi) is obtained from (4.4). Although x̂p minimizes the (`p)
p error, rather than the

`p-norm error, we call x̂p the `p-norm minimizer for simplicity. Because it can be shown that

lim
p→∞

‖x̂− x‖p = ‖x̂− x‖∞,

it is reasonable to expect that if we set p to a large value, then running our `p-norm mini-

mizer (4.10) will give a solution that converges to an estimate that minimizes the `∞-norm

error.

4.5.2 Compressive sensing systems

Recall from Section 2.2.1 that in the last iteration of GAMP [77], the compressive sensing system

in (1.1) is converted to parallel scalar Gaussian channels in (3.2). Therefore, the minimum

mean `p-norm error estimator in (4.10) can be applied to compressive sensing systems. We

first compute the conditional probability density function fX|Q(x|q) using Bayes’ rule (similar

to (4.12)), where q is obtained from GAMP (2.15). Then, given an additive error metric D(x̂,x),

the optimal estimate x̂opt is generated by minimizing the conditional expectation of the error
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Figure 4.1: The performance of the Wiener filter and the `p1 , `p2 , and `p3-norm minimizers in
terms of `∞-norm error in parallel scalar Gaussian channels. The optimal popt increases as N
increases. SNR is 20 dB. (a) p1 = 7, p2 = 13, p3 = 20; (b) p1 = 7, p2 = 13, p3 = 20; and
(c) p1 = 9, p2 = 12, p3 = 20.

metric E[D(x̂,x)|q]:

x̂opt = arg min
x̂
E[D(x̂,x)|q]. (4.13)

In the large system limit, the estimate satisfying (4.13) is asymptotically optimal, because it

minimizes the conditional expectation of the error metric. Similar to (4.10) and (4.11), the

estimate x̂opt is solved in a component-wise fashion:

x̂opt,i = arg min
x̂i

∫
D(x̂i, xi)f(xi|qi)dxi, (4.14)

for each xi, i ∈ {1, 2, . . . , N}. Finally, the `p-norm minimizer for linear mixing systems is

x̂′p,i = arg min
x̂i

∫
|x̂i − xi|pf(xi|qi)dxi (4.15)

for i ∈ {1, 2, . . . , N}.

4.6 Numerical Results

Recall that the Wiener filter (4.8) is asymptotically optimal, but its performance for finite N

is not clear. On the other hand, the `p-norm minimizer is a heuristic for finite N . Let us

compare the two approaches numerically for both parallel scalar Gaussian channels (2.15) and

compressive sensing systems (1.1).
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Figure 4.2: The performance of the Wiener filter and the `p1 , `p2 , and `p3-norm minimizers in
terms of `∞-norm error in linear mixing systems. The optimal popt increases as N increases. SNR
is 20 dB. (a) p1 = 6, p2 = 10, p3 = 15, M/N = 0.3; (b) p1 = 6, p2 = 10, p3 = 15, M/N = 0.4;
and (c) p1 = 9, p2 = 12, p3 = 15, M/N = 0.4.

4.6.1 Parallel scalar Gaussian channels

We first test for the parallel scalar Gaussian channels w = x + u (4.3), where the input signal x

is generated by the following 3 sources,

� Case 1: i.i.d. sparse Gaussian with sparsity rate 0.05, xi ∼ 0.05 · N (0, 1) + 0.95 · δ(xi).

� Case 2: i.i.d. sparse Gaussian with sparsity rate 0.1, xi ∼ 0.1 · N (0, 1) + 0.9 · δ(xi).

� Case 3: i.i.d. Gaussian mixture, xi ∼ 0.01·N (0, 2)+0.03·N (0, 1)+0.06·N (0, 0.5)+0.9·δ(xi).

The noise is ui ∼ N (0, σ2
u), where the noise variance σ2

u is set such that the signal to noise ratio

(SNR) satisfies

SNR =
E
[∑N

i=1 x
2
i

]

E
[∑N

i=1 u
2
i

] = 100 = 20 dB.

The Wiener filter is calculated by equation (4.8). For each case, we choose 3 values of p

(p1, p2, and p3), and obtain the `p-norm minimizers by equation (4.10). Figure 4.1 illustrates

the `∞-norm errors for Cases 1–3. In each subfigure, we compare the `∞-norm errors achieved

by the Wiener filter (solid line with cross markers) and by the `p-norm error minimizers, x̂p1

(solid line with pentagram markers), x̂p2 (dashed with inverse triangles), and x̂p3 (dash-dot

with circles). The horizontal axis represents the signal dimension N varying from 500–20,000,

and the vertical axis represents the mean `∞-norm error. The values shown are averages over

15,000 repeated tests.

It is shown in Figure 4.1 that the curves corresponding to the Wiener filter increase more

slowly as a function of N than the curves corresponding to the `p-norm minimizers. Therefore,

we can see that the Wiener filter minimizes the mean `∞-norm error when N →∞.
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At the same time, the `p-norm error minimizers (4.10) with different values of p indeed

outperform the Wiener filter for finite N . For each N , there exists an optimal value of p such

that x̂p outperforms all the other estimators; and the optimal p increases as N increases.

An intuitive explanation is that as N increases, the probability that larger errors occur also

increases, and thus a larger p in (4.9) is used to suppress larger outliers.

Figures 4.1a and 4.1b correspond to different sparsity rates, s = 0.05 and 0.1. The figures

suggest that the value of popt for a fixed signal dimension N is related to the sparsity rate of

the input signal x.

4.6.2 Compressive sensing systems

We perform simulations for compressive sensing systems (1.1) using the software package

“GAMP” [80] and our metric-optimal algorithm in Chapter 3. Our metric-optimal software

package can be found at http://people.engr.ncsu.edu/dzbaron/software/arb_metric/,

and it automatically computes equation (4.14) where the distortion function (3.1) is given as

the input of the algorithm.

Again, we test for settings where input signals are generated by the 3 different sources

(Cases 1–3 in Section 4.6.1). The measurement matrices A are i.i.d. zero-mean Gaussian and are

normalized to have unit-norm columns. The channels (4.3) are AWGN, and the noise variance

is set such that SNR is 20 dB. The number of measurements M in the matrices A varies as

follows: (i) in Case 1, M/N = 0.3; (ii) in Case 2, M/N = 0.4; and (iii) in Case 3, M/N = 0.4.

(Cases 2 and 3 are more complicated signals, and so more measurements are necessary for

reasonable performance.) As before, the signal dimension N ranges from 500 to 20, 000.

We run the Wiener filter approach (4.8), GAMP [77, 80], and our `p-norm minimizers with

different values of p (4.15). Figure 4.2 shows results for the 3 cases. It can be seen from Figure 4.2

that the Wiener filter outperforms GAMP (dash-dot line with triangle markers) for most N ,

whereas x̂p’s outperform the Wiener filter. Moreover, as N increases, popt increases.

To summarize, the heuristic approach of the `p-norm minimizers complements the asymp-

totic optimality of the Wiener filter. On the other hand, it seems unlikely that this heuristic is

truly optimal, and we leave the design of signal reconstruction algorithms with optimal `∞-norm

error for future work.

4.7 Conclusion

In this chapter, we studied the signal reconstruction problem in parallel Gaussian channels

and in compressive sensing systems, where the signals are generated by i.i.d. Gaussian mixture

sources, and the `∞-norm error was used to quantify the performance. We proved that in
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parallel Gaussian channels the Wiener filter (4.8), a simple linear function that is applied to the

Gaussian channel outputs, asymptotically minimizes the mean `∞-norm error when the signal

dimension N → ∞. Specifically, the multiplicative constant of the linear filter only relates to

the greatest variance of the Gaussian mixture components and the variance of the Gaussian

noise.

Our theoretical results in the first half of the chapter are asymptotic, but in the second half

of the chapter, we applied the metric-optimal procedure from Chapter 3. The numerical results

showed that, with a finite signal length N , the `p-norm minimizer [100] has lower `∞-norm error

than the Wiener filter.

We also applied the `p-norm minimizer to compressive sensing systems in settings where

the measurement matrix A is sparse i.i.d. and a compressive sensing system can be decoupled

to parallel scalar Gaussian channels [46, 47, 105]. Let us highlight that the channels (1.1) in the

compressive sensing systems are not restricted to Gaussian. Again, for a finite N , the `p-norm

minimizer outperforms the Wiener filter for `∞-norm error.
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Chapter 5

Compressive Imaging

Having studied theoretical properties of compressive signal reconstruction with arbitrary error

metrics, we further explore practical compressive imaging problems, where the input signal is a

vectorized image, and the goal is to acquire the image using as few measurements as possible.

Acquiring images in a compressive manner requires less sampling time than conventional imag-

ing technologies. Applications of compressive imaging appear in medical imaging [16, 61, 70],

seismic imaging [25], and hyperspectral imaging [74, 121].

In this chapter, we propose compressive imaging algorithms, where we employ two wavelet

based image denoisers within the approximate message passing (AMP) framework. The pro-

posed algorithms in this chapter were first described in Tan et al. [101, 102]. We will continue our

discussion about compressive imaging problems in Chapter 6, where compressive hyperspectral

imaging problems are considered.

5.1 Related Work

Many compressive imaging algorithms have been proposed in the literature. For example, Som

and Schniter [91] modeled the structure of the wavelet coefficients by a hidden Markov tree

(HMT), and applied a turbo scheme that alternates between inference on the HMT structure

with standard belief propagation and inference on the compressive sensing measurement struc-

ture with the generalized approximate message passing algorithm. He and Carin [51] proposed

a hierarchical Bayesian approach with Markov chain Monte Carlo (MCMC) for natural image

reconstruction. Soni and Haupt [92] exploited a hierarchical dictionary learning method [56]

and assumed that projecting images onto the learned dictionary will yield tree-sparsity, and

therefore the nonzero supports of the dictionary can be identified and estimated accurately by

setting an appropriate threshold.

However, existing compressive imaging algorithms may either not achieve good reconstruc-
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tion quality or not be fast enough. Therefore, in this chapter, we focus on a variation of a fast

and effective algorithm called approximate message passing (AMP) [33] to improve over the

prior art. AMP is an iterative signal reconstruction algorithm that performs scalar denoising

within each iteration, and proper selection of the denoising function used within AMP is needed

to obtain better reconstruction quality. One challenge in applying image denoisers within AMP

is that it may be hard to compute the so-called “Onsager reaction term” in (2.17) [33, 107]

in the AMP iteration steps. The Onsager reaction term includes the derivative of the image

denoising function, and thus if an image function does not have a convenient closed form, then

the Onsager reaction term may be difficult to compute.

Dictionary learning is an effective technique that has attracted a great deal of attention

in image denoising. Dictionary learning based methods [36, 123] generally achieve lower recon-

struction error than wavelet-based methods. However, the learning procedure requires a large

amount of training images, and may involve manual tuning. Owing to these limitations, our

main focus in this chapter is to integrate relatively simple and fast image denoisers into com-

pressive imaging reconstruction algorithms.

Dabov et al. [29] developed an image denoising strategy that employs collaborative filtering

in a sparse 3-D transform domain, and they offered an efficient implementation that achieves

favorable denoising quality. Other efficient denoising schemes include wavelet-based methods.

A typical wavelet-based image denoiser proceeds as follows: (i) apply a wavelet transform to

the image and obtain wavelet coefficients; (ii) denoise the wavelet coefficients; and (iii) apply

an inverse wavelet transform to the denoised wavelet coefficients, yielding a denoised image.

Two popular examples of denoisers that can be applied to the wavelet coefficients are hard

thresholding and soft thresholding [32]. Variations on the thresholding scheme can be found in

[23, 37]; other wavelet-based methods were proposed by Simoncelli and Adelson [90], Mıhçak et

al. [58], and Moulin and Liu [68].

5.2 Image Reconstruction Algorithm

In this chapter, we focus on the system model defined in (1.1) where both the measurement

matrix A and the noise z are independent and identically distributed (i.i.d.) Gaussian. Recall

that in Chapter 2 we introduced the AMP algorithm. In the t-th iteration, we obtain the

vectors xt ∈ RN in (2.16) and rt ∈ RM in (2.17). The vector AT rt + xt ∈ RN in (2.16) can be

regarded as noisy measurements of x in the t-th iteration with noise variance σ2
t , and therefore

the denoising function ηt(·) is performed on a scalar channel. Let us denote the equivalent scalar

channel at iteration t by

qt = AT rt + xt = x + vt, (5.1)
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where vti ∼ N (0, σ2
t ). The asymptotic performance of AMP can be characterized by a state

evolution (SE) formalism:

σ2
t+1 = σ2

z +
1

R
E
[
(ηt (X + σtW )−X)2

]
, (5.2)

where the random variables W ∼ N (0, 1) and X ∼ fX . Formal statements about SE appear

in Bayati and Montanari [10]. Note that SE (5.2) tracks the noise variance for AMP itera-

tions, but the noise variance σ2
t+1 need not necessarily be the smallest possible, unless in each

iteration the denoiser ηt(·) achieves the minimum mean square error (MMSE). On the other

hand, it is unrealistic to expect existing image denoisers to achieve the MMSE, because the

statistical distribution of natural images has yet to be determined. That said, running AMP

with good image denoisers that achieve lower mean square error (MSE) may yield lower MSE

in compressive imaging problems.

Finally, SE theoretically characterizes the noise variance σ2
t of the scalar channel at each

iteration. However, the MSE performance of image denoisers cannot be characterized theoret-

ically. Therefore, we must estimate the effective Gaussian noise level σ2
t empirically in each

AMP iteration. The estimated noise variance σ̂2
t can be calculated as [66]:

σ̂2
t =

1

M

M∑

i=1

(rti)
2, (5.3)

where rt is defined in (2.17).

Before we end this section, let us highlight that in Chapters 3 and 4, we utilized the parallel

scalar Gaussian channel in the last iteration of GAMP, while in the compressive imaging algo-

rithm we describe in this chapter, image denoisers are applied to the parallel scalar Gaussian

channels in every iteration.

5.2.1 Wavelet transforms in AMP

In this section, we describe how wavelet-based image denoisers are applied within AMP, and

then outline two image denoisers that were proposed by Figueiredo and Nowak [37] and Mıhçak

et al. [58], respectively.

In image processing, one often computes the wavelet coefficients [63] of images, applies some

signal processing technique to the wavelet coefficients, and finally applies the inverse wavelet

transform to the processed coefficients to obtain processed images. We now show how image

denoising can be performed within AMP in the wavelet domain. Let us denote the wavelet

transform by W and the inverse wavelet transform by W−1. By applying the wavelet trans-

form to a vectorized image signal x (a 2-dimensional wavelet transform is used), we obtain
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the wavelet coefficient vector θx = Wx. Conversely, x = W−1θx. Therefore, the matrix chan-

nel (1.1) becomes y = AW−1θx + z, where AW−1 can be regarded as a new matrix in the

matrix channel (1.1) and θx as the corresponding input signal.

Let us express the AMP iterations (2.16, 2.17) for settings where the matrix is AW−1,

θt+1
x = ηt((AW−1)T rt + θtx), (5.4)

rt = y − (AW−1)θtx

+
1

R
rt−1〈η′t−1((AW−1)T rt−1 + θt−1

x )〉

= y −Axt

+
1

R
rt−1〈η′t−1((AW−1)T rt−1 + θt−1

x )〉. (5.5)

Because the wavelet transform matrix is orthonormal, i.e., WWT = I = WW−1, it can be

shown that (AW−1)T =WAT . Therefore, the input of the denoiser ηt(·) (5.4) becomes

(AW−1)T rt + θtx =WAT rt + θtx =WAT rt +Wxt =Wqt, (5.6)

where qt (6.5) is the noisy image at iteration t, and Wqt is the wavelet transform applied to

the noisy image.

With the above analysis of the modified AMP (5.4, 5.5), we formulate a compressive imaging

procedure as follows. Let us denote the the wavelet transform of the scalar channel (6.5) by

θtq = θx + θtv, (5.7)

where θtq = Wqt, θx = Wx, and θtv = Wvt. First, rt and xt are initialized to all-zero vectors.

Then, at iteration t the algorithm proceeds as follows,

1. Calculate the residual term rt.

2. Calculate the noisy image qt = AT rt+xt, and apply the wavelet transformW to the noisy

image qt to obtain wavelet coefficients θtq, which are the inputs of the scalar denoiser ηt(·)
in (5.4).

3. Apply the denoiser ηt(·) to the wavelet coefficients θtq, and obtain denoised coefficients θt+1
x .

4. Apply the inverse wavelet transform W−1 to the coefficients θt+1
x to obtain the estimated

image xt+1, which is used to compute the residual term in the next iteration.

36



−10 −5 0 5 10
−10

−5

0

5

10

θ
t
q,i

θ
t+

1

x
,i

 

 

Hard thresholding
Soft thresholding
ABE

Figure 5.1: Comparison of ABE with hard and soft thresholding.

5.2.2 Image denoisers

We choose to denoise the wavelet coefficients using scalar denoisers proposed by Figueiredo

and Nowak [37] and Mıhçak et al. [58], respectively, because these two denoisers are simple to

implement while revealing promising numerical results (see Section 6.4). We call the algorithm

where ABE [37] is utilized within AMP “AMP-ABE,” and the algorithm where the adaptive

Wiener filter [58] is utilized “AMP-Wiener.” In both algorithms, the variance of the noise σ2
t in

the noisy image is obtained using (5.3). Because we use an orthonormal wavelet transform, the

noise variance in the wavelet domain is equal to that in the image domain. Although we only

show how to employ two image denoisers within AMP, they serve as a proof of concept that other

image denoisers could also be applied within AMP, possibly leading to further improvements

in both image reconstruction quality and runtime.

Amplitude-scale-invariant Bayes estimator

Figueiredo and Nowak’s denoiser [37] is an amplitude-scale-invariant Bayes estimator (ABE),

and it is a scalar function. More specifically, for each noisy wavelet coefficient θtq,i (5.7), the

estimate of θx,i for the next iteration is

θt+1
x,i = ηt(θ

t
q,i) =

(
(θtq,i)

2 − 3σ2
t

)
+

θtq,i
, (5.8)

where σ2
t is the noise variance of the scalar channel (6.5) at the t-th AMP iteration, and (·)+

is a function such that (u)+ = u if u > 0 and (u)+ = 0 if u ≤ 0. Note that because the wavelet

transform matrix W is orthonormal, the variance of the noise vt (6.5) is equal to the variance
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of θtv (5.7).

Figure 5.1 illustrates the ABE function. It can be seen that ABE offers a compromise

between the hard thresholding, i.e., η(u, τ) = u · 1(u>|τ |), where 1{·} denotes an indicator

function, and soft thresholding, i.e., η(u, τ) = sign(u) · (|u| − τ)+, proposed by Donoho and

Johnstone [32]. ABE is convenient to utilize, because there is no need to tune the thresholding

values,1 and ABE has been shown to outperform both hard and soft thresholding methods for

image denoising [37].

The ABE function is continuous and differentiable except for two points (θtq,i = ±
√

3σt),

and we calculate the derivative of this denoising function numerically to obtain the Onsager

reaction term in (2.17).

Adaptive Wiener filter

Mıhçak et al. [58] proposed a method to estimate the variances of the wavelet coefficients, and

then apply the corresponding Wiener filter to each wavelet coefficient. The variance of the noisy

wavelet coefficient θtq,i is estimated from its neighboring coefficients. More specifically, a set of

3× 3 or 5× 5 neighboring coefficients Ni that is centered at θtq,i is considered, and the variance

of θtq,i is estimated by averaging the sum of (θtq,k)
2 where k ∈ Ni. This method of averaging the

neighboring coefficients can be regarded as first convolving a 3× 3 or 5× 5 mask of all 1’s with

the matrix of squared wavelet coefficients θtq, and then dividing by the normalizing constant 9

(for a 3 × 3 mask) or 25 (for a 5 × 5 mask). Other masks can be applied to produce different

and possibly better denoising results. For example, we have found that the mask

1 1 1

1 1 2 1 1

1 2 3 2 1

1 1 2 1 1

1 1 1

obtains lower MSE than other 5×5 masks we have considered. Recall the scalar channel defined

in (5.7) where the noise variance is σ2
t ; we estimate the variance of a noisy wavelet coefficient θtq,i

by σ̂2
i , and the variance of the true wavelet coefficient θtx,i by σ̂2

i − σ2
t .

2 Therefore, the scaling

factor in the Wiener filter [120] is given by
σ̂2
i−σ2

t

(σ̂2
i−σ2

t )+σ2
t
, and the adaptive Wiener filter being

used as the denoising function can be expressed as follows,

θt+1
x,i = ηt(θ

t
q,i) =

σ̂2
i − σ2

t

(σ̂2
i − σ2

t ) + σ2
t

θtq,i =
σ̂2
i − σ2

t

σ̂2
i

θtq,i. (5.9)

1We note in passing that Mousavi et al. [69] proposed to tune the soft threshold automatically.
2We use max{σ̂2

i − σ2
t , 0} to restrict the variance to be non-negative.
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Finally, the derivative of this denoising function with respect to θtq,i is simply the scaling factor
σ̂2
i−σ2

t

σ̂2
i

of the Wiener filter, and so the Onsager reaction term in (2.17) can be obtained efficiently.

In standard AMP [33], the denoising function ηt(·) is separable, meaning that θt+1
x,i only

depends on its corresponding noisy wavelet coefficient θtq,i. In the adaptive Wiener filter, how-

ever, the estimated variance σ̂2
i of each noisy wavelet coefficient depends on the neighboring

coefficients of θtq,i, and so the denoising function in (5.9) implicitly depends on the neighbor-

ing coefficients of θtq,i. Therefore, the adaptive Wiener filter in (5.9) is not a strictly separable

denoising function, and AMP-Wiener encounters convergence issues. Fortunately, a technique

called “damping” [84] solves for the convergence problem of AMP-Wiener. Specifically, damp-

ing is an extra step in the AMP iteration (2.16); instead of updating the value of xt+1 by the

output of the denoiser ηt(A
T rt+ xt), we assign a weighted sum of ηt(A

T rt+ xt) and xt to xt+1

as follows,

xt+1 = (1− λ) · ηt(AT rt + xt) + λ · xt, (5.10)

for some constant 0 ≤ λ < 1. It has been shown by Rangan et al. [84] that sufficient damp-

ing ensures the convergence of AMP where the measurement matrix A is not i.i.d. Gaussian.

However, we did indeed use i.i.d. Gaussian matrices in our numerical results in Section 6.4, and

damping solved the convergence problem of AMP-Wiener, which suggests that damping may

be an effective technique when various convergence issues arise in AMP based algorithms. We

note in passing that other techniques such as SwAMP [64] and ADMM-GAMP [82] also solve

for the convergence problem in AMP.

5.3 Numerical Results

Having described the AMP algorithm [33] and two image denoisers [37, 58], in this section we

present the numerical results of applying these two denoisers within AMP.

5.3.1 Reconstruction quality and runtime

We compare AMP-ABE and AMP-Wiener with three prior art compressive imaging algorithms,

(i) Turbo-BG proposed by Som and Schniter [91]; (ii) Turbo-GM, also by Som and Schniter [91];

and (iii) a Markov chain Monte Carlo (MCMC) method by He and Carin [51]. Both Turbo-BG

and Turbo-GM are also message passing based algorithms. However, these two algorithms re-

quire more computation than AMP-ABE and AMP-Wiener, because they include two message

passing procedures; the first procedure solves for dependencies between the wavelet coefficients

and the second procedure is AMP. The performance metrics that we use to compare the al-

gorithms are runtime and normalized MSE (NMSE), NMSE(x, x̂) = 10 log10(‖x − x̂‖22/‖x‖22),
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where x̂ is the estimate of the vectorized input image x. In all simulations, we use the Haar

wavelet transform [63].

Let us begin by contrasting the three prior art compressive imaging algorithms based on

the numerical results provided in [91]. Turbo-BG and Turbo-GM have similar runtimes; the

NMSE of Turbo-GM is typically 0.5 dB better (lower) than the NMSE of Turbo-BG. At the

same time, the NMSE of the MCMC algorithm [51] is comparable to those of Turbo-BG and

Turbo-GM, but MCMC is 30 times slower than the Turbo approaches of Som and Schniter [91].

Other algorithms have also been considered for compressive imaging. For example, compressive

sampling matching pursuit (CoSaMP) [71] requires only half the runtime of Turbo-GM, but its

NMSE is roughly 4 dB worse than that of Turbo-GM; and model based CS [8] is twice slower

than Turbo-GM and its NMSE is also roughly 4 dB worse. Therefore, we provide numerical

results for Turbo-BG, Turbo-GM, MCMC, and our two proposed AMP based approaches.

Numerical setting: We downloaded 591 images from “pixel-wise labeled image database

v2” at http://research. microsoft.com/en-us/projects/objectclassrecognition, and extracted im-

age patches using the following two methods.

� Method 1: A 192× 192 patch is extracted from the upper left corner of each image, and

then the patch is resized to 128 × 128; this image patch extraction method was used by

Som and Schniter [91].

� Method 2: A 192×192 patch is extracted from the upper left corner of each image without

resizing.

The measurement matrix A ∈ RM×N is generated with i.i.d. Gaussian entries distributed

as N (0, 1
M ); each column is then normalized to have unit norm. For 128 × 128 patches ex-

tracted by Method 1, the number of measurements M = 5, 000, which is identical to the

numerical setting by Som and Schniter [91]. For 192× 192 patches extracted by Method 2, the

number of measurements M = 11, 059, i.e., the measurement rate is 0.3. In both methods, the

measurements y are noiseless, i.e., y = Ax. Finally, we set the number of AMP iterations to

be 30 and the damping constant λ (5.10) for AMP-Wiener to be 0.1.

Result 1: Tables 5.1 and 5.2 show the NMSE and runtime averaged over the 591 image

patches that are extracted by Methods 1 and 2, respectively. Runtime is measured in seconds

on a Dell OPTIPLEX 9010 running an Intel(R) CoreTM i7-860 with 16GB RAM, and the

environment is Matlab R2013a. Figures 5.2 and 5.3 complement Tables 5.1 and 5.2, respectively,

by plotting the average NMSE over 591 images from iteration 1 to iteration 30.

It can be seen from Table 5.1 that the NMSE of AMP-Wiener is the best (lowest) among all

the algorithms compared. At the same time, AMP-Wiener runs approximately 3.5 times faster

than the Turbo approaches of Som and Schniter [91], and 120 times faster than MCMC [51].
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Algorithm NMSE (dB) Runtime (sec)

Turbo-BG [91] -20.37 12.39
Turbo-GM [91] -20.72 12.47

MCMC [51] -20.31 423.15
AMP-ABE -19.30 3.39

AMP-Wiener -21.00 3.34

Table 5.1: NMSE and runtime averaged over 591 image patches: a 192×192 patch from the upper left
corner of each image is first extracted, and then resized to 128×128. The number of measurements M =
5, 000, and the measurements are noiseless.
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Figure 5.2: Average NMSE over 591 images from AMP iteration 1 to iteration 30. Image patches are
extracted by Method 1: a 192 × 192 patch from the upper left corner of each image is first extracted,
and then resized to 128× 128.

Although AMP-ABE does not outperform the competing algorithms in terms of NMSE, it runs

as fast as AMP-Wiener.

Table 5.1 presents the runtimes of AMP-ABE and AMP-Wiener for image patches extracted

by Method 1 with 30 iterations. However, we can see from Figure 5.2 that AMP-ABE and

AMP-Wiener with fewer iterations already achieve NMSEs that are close to the NMSE shown

in Table 5.1. In Figure 5.2, the horizontal axis represents iteration numbers, and the vertical

axis represents NMSE. It is shown in Figure 5.2 that the NMSE drops markedly from −10 dB

to −21 dB for AMP-Wiener (solid line) and from −5 dB to −19 dB for AMP-ABE (dash-dot

line), respectively. Note that the average NMSE is approximately −21 dB for AMP-Wiener and

−19 dB for AMP-ABE around iteration 15. Therefore, we may halve the runtimes of AMP-ABE

and AMP-Wiener (to approximately 1.7 seconds) by reducing the number of AMP iterations

from 30 to 15.

The simulation for the larger image patches extracted by Method 2 is slow, and thus the

41



Algorithm NMSE (dB) Runtime (sec)

Turbo-GM [91] -19.64 56.12
AMP-ABE -17.57 15.99

AMP-Wiener -20.29 15.53

Table 5.2: NMSE and runtime averaged over 591 images extracted by Method 2: a 192× 192 patch is
extracted from the upper left corner of each image. The number of measurements M = 11, 059, and the
measurements are noiseless.
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Figure 5.3: Average NMSE over 591 images from AMP iteration 1 to iteration 30. Image patches are
extracted by Method 2: a 192× 192 patch is extracted from the upper left corner of each image.

results for Turbo-BG and MCMC have not been obtained for Table 5.2. We believe that Turbo-

BG is only slightly worse than Turbo-GM. At the same time, we did test for MCMC on several

images, and found that the NMSEs obtained by MCMC were usually 0.5 dB higher than AMP-

Wiener and the runtimes of MCMC usually exceeded 1,500 seconds. Similar to Figure 5.2, it

can be seen from Figure 5.3 that the runtimes of our AMP based approaches could be further

reduced by reducing the number of AMP iterations without much deterioration in estimation

quality.

Result 2: As a specific example, Figure 5.4 illustrates one of the 591 image patches and

the estimated patches using AMP-Wiener at iterations 1, 3, 7, 15, and 30. We also present

the estimated patches using Turbo-GM and MCMC. It can be seen from Figure 5.4 that the

estimated images using AMP-Wiener are gradually denoised as the number of iterations is

increased, and the NMSE achieved by AMP-Wiener at iteration 15 already produces better

reconstruction quality than Turbo-GM and MCMC.
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Original AMP iteration 1 AMP iteration 3 AMP iteration 7

AMP iteration 15 AMP iteration 30 Turbo−GM MCMC

Figure 5.4: Original “10 5 s.bmp” input image, the estimated images using AMP-Wiener at iterations
1, 3, 7, 15, 30, and the estimated images using Turbo-GM and MCMC. The image patch is extracted
by Method 1: a 192 × 192 patch is first extracted, and then resized to 128 × 128. The NMSE of each
estimated image is as follows, AMP-Wiener iteration 1, −11.46 dB; AMP-Wiener iteration 3, −18.17
dB; AMP-Wiener iteration 7, −26.28 dB; AMP-Wiener iteration 15, −30.07 dB; AMP-Wiener iteration
30, −30.36 dB; Turbo-GM [91], −29.62 dB; and MCMC [51], −29.13 dB.

5.3.2 Performance of scalar denoisers

Having seen that AMP-Wiener consistently outperforms AMP-ABE, let us now understand

why AMP-Wiener achieves lower NMSE than AMP-ABE.

We test for ABE [37] and the adaptive Wiener filter [58] as scalar image denoisers in scalar

channels as defined in (6.5). In this simulation, we use the 591 image patches extracted by

Method 2, and add i.i.d. Gaussian noise N (0, σ2) to the image patches. The pixel values are

normalized to be between 0 and 1, and we verified from the simulations for Table 5.2 that

the estimated noise variances of the scalar channels in AMP iterations are typically between

1 × 10−4 and 1. In Figure 5.5, the vertical axis represents NMSE, and the horizontal axis

represents different noise variances varying from 1 × 10−4 to 1 . It is shown in Figure 5.5

that the adaptive Wiener filter (solid line) consistently achieves lower NMSE than ABE (dash-

dot line) for all noise variances, which suggests that AMP-Wiener outperforms AMP-ABE in

every AMP iteration, and thus outperforms AMP-ABE when we stop iterating in iteration 30.

Therefore, in order to achieve favorable reconstruction quality, it is important to select a good
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Figure 5.5: Average NMSE over 591 images versus noise variance. Image patches are extracted by
Method 2: a 192×192 patch is extracted from the upper left corner of each image. These image denoisers
are applied to scalar channels (6.5).

image denoiser within AMP. With this in mind, we include the NMSE of the image denoiser

“block-matching and 3-D filtering” BM3D [29] in Figure 5.5, and find that BM3D (dashed line)

has lower NMSE than the adaptive Wiener filter, especially when the noise variance is large.

Note that the NMSEs of ABE for different noise variances are within 1 dB of the NMSEs of the

adaptive Wiener filter, but this performance gap in scalar denoisers is amplified to more than

2 dB (refer to Table 5.2) when applying the scalar denoisers within AMP. In other words, it

is possible that applying BM3D within AMP could achieve better reconstruction quality than

AMP-Wiener. However, one challenge of applying BM3D within AMP will be that it is not clear

whether the Onsager reaction term in (2.17) can be computed in closed form or numerically, and

thus an alternative way of approximating the Onsager reaction term may need to be developed.

Note that Metzler et al. [65] recently showed how to approximate the Onsager correction term

numerically, thus allowing to use different image denoisers within AMP.

5.3.3 Reconstruction quality versus measurement rate

Finally, we also evaluate the performance of each algorithm by plotting the NMSE (average

NMSE over 591 images) versus the measurement rate R = M/N . The measurement matrix A

is generated the same way as the numerical setting in Section 5.3.1.

Result: Figures 5.6 and 5.7 illustrate how the NMSEs achieved by AMP-Wiener and Turbo-

GM vary when the measurement rate R changes, where the horizontal axis represents the

measurement rate R = M/N , and the vertical axis represents NMSE. Figures 5.6 shows the

results for image patches extracted by Method 1, and the measurement rate R varies from 0.1 to

44



0.2 0.4 0.6 0.8 1

−45

−40

−35

−30

−25

−20

−15

Measurement rate R

N
M

S
E

 (
dB

)
 

 

Turbo−GM
AMP−Wiener

Figure 5.6: Average NMSE over 591 images versus measurement rate. Image patches are extracted by
Method 1: a 192× 192 patch from the upper left corner of each image is first extracted, and then resized
to 128× 128.
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Figure 5.7: Average NMSE over 591 images versus measurement rate. Image patches are extracted by
Method 2: a 192× 192 patch is extracted from the upper left corner of each image.

1. Figure 5.7 shows the results for image patches extracted by Method 2. Because the simulation

for 192× 192 image patches is relatively slow, we only show results for R that varies from 0.1

to 0.6. It can be seen from Figures 5.6 and 5.7 that AMP-Wiener (solid line with pentagram

markers) achieves lower NMSE than that of Turbo-GM (dash-dot line with asterisks) for all

values of R.
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5.4 Conclusion

In this chapter, we proposed compressive imaging algorithms that apply image denoisers within

AMP. Specifically, we used the “amplitude-scale-invariant Bayes estimator” (ABE) [37] and an

adaptive Wiener filter [58] within AMP. Numerical results showed that AMP-Wiener achieves

the lowest reconstruction error among all competing algorithms in all simulation settings, while

AMP-ABE also offers competitive performance. Moreover, the runtimes of AMP-ABE and

AMP-Wiener are significantly lower than those of MCMC [51] and the Turbo approaches [91],

and Figures 5.2 and 5.3 suggested that the runtimes of our AMP based algorithms could be

reduced further if we accept a slight deterioration in NMSE.

Recall that the input of the denoising function ηt in (2.16) is a noisy image with i.i.d.

Gaussian noise, and so we believe that any image denoiser that deals with i.i.d. Gaussian

noise can be applied within AMP. At the same time, in order to develop fast AMP based

compressive imaging algorithms, the image denoisers that are applied within AMP should be

fast. By comparing the denoising quality of ABE [37] and the adaptive Wiener filter [58] as

image denoisers in scalar channels, we have seen that AMP with a better denoiser produces

better reconstruction quality for compressive imaging problems. With this in mind, employing

more advanced image denoisers within AMP may produce promising results for compressive

imaging problems.
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Chapter 6

Compressive Hyperspectral Imaging

Having investigated the compressive imaging problem with two-dimensional images, we further

study a specific application of compressive imaging, compressive hyperspectral imaging, in this

chapter. We modify the AMP-Wiener algorithm that is described in Chapter 5 and apply the

algorithm to three-dimensional (3D) hyperspectral image reconstruction. We call the modified

algorithm AMP-3D-Wiener. The algorithm proposed in this chapter appeared in Tan et al. [103,

104].

A hyperspectral image is a 3D image cube comprised of a collection of two-dimensional (2D)

images (slices), where each 2D image is captured at a specific wavelength. Hyperspectral images

allow us to analyze spectral information about each spatial point in a scene, and thus can help

us identify different materials that appear in the scene [53]. Therefore, hyperspectral imaging

has applications to areas such as medical imaging [72, 87], remote sensing [57], geology [59], and

astronomy [52].

One conventional approach to acquire hyperspectral images is to use a spectrometer, which

captures spatial information sequentially. However, spectrometers have some disadvantages: (i)

data acquisition takes a long time, because the scanning is sequential; and (ii) large amounts

of data are acquired and must be stored and transmitted.

To address the limitations of conventional spectral imaging techniques such as spectrome-

ters, many spectral imager sampling schemes based on compressive sensing [7, 20, 31] have been

proposed [6, 41, 122]. The coded aperture snapshot spectral imager (CASSI) [3, 41, 115, 116] is

a popular compressive spectral imager and acquires image data from different wavelengths si-

multaneously. In CASSI, the voxels of a scene are first coded by an aperture, then dispersed by

a dispersive element, and finally detected by a 2D FPA. That is, a 3D image cube is suppressed

and measured by a 2D array, and thus CASSI acquires far fewer measurements than those

acquired by conventional spectral imagers, which significantly accelerates the imaging process.

On the other hand, because the measurements from CASSI are highly compressive, reconstruct-
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ing 3D image cubes from CASSI measurements becomes challenging. Moreover, because of the

massive size of 3D image data, it is desirable to develop fast reconstruction algorithms in order

to realize real time acquisition and processing.

Fortunately, it is possible to reconstruct the 3D cube from the 2D measurements according to

the theory of compressive sensing [7, 20, 31], because the 2D images from different wavelengths

are highly correlated, and the 3D image cube is sparse in an appropriate transform domain,

meaning that only a small portion of the transform coefficients have large values. Therefore, we

are motivated to investigate how to apply AMP to the CASSI system.

6.1 Related Work

Several algorithms have been proposed to reconstruct image cubes from measurements ac-

quired by CASSI. One of the efficient algorithms is gradient projection for sparse reconstruc-

tion (GPSR) [38], which is fast and usually produces reasonable reconstruction. GPSR mod-

els hyperspectral image cubes as sparse in the Kronecker product of a 2D wavelet transform

and a one-dimensional (1D) discrete cosine transform (DCT), and solves the regularized `1-

minimization problem to enforce sparsity in this transform domain. Besides using `1-norm as

the regularizer, total variation is a popular alternative; Wagadarikar et al. [116] employed total

variation [21, 22] as the regularizer in the two-step iterative shrinkage/thresholding (TwIST)

framework [14], a modified and fast version of standard iterative shrinkage/thresholding. Apart

from using the wavelet-DCT basis, one can learn a dictionary with which the image cubes can

be sparsely represented [74, 122]. An interesting idea to improve the reconstruction quality of

the dictionary learning based approach is to use a standard image with red, green, and blue

(RGB) components of the same scene as side information [122]. That is, a coupled dictionary is

learned from the joint datasets of the CASSI measurements and the corresponding RGB image.

Despite the good results attained with the algorithms mentioned above, they all need manual

tuning of some parameters, which may be time consuming. In GPSR and TwIST, the optimal

regularization parameter could be different in reconstructing different image cubes; in dictionary

learning methods, the patch size and the number of dictionary atoms must be chosen carefully.

6.2 Coded Aperture Snapshot Spectral Imager (CASSI)

6.2.1 Mathematical representation of CASSI

The coded aperture snapshot spectral imager (CASSI) [115] is a compressive spectral imaging

system that collects far fewer measurements than traditional spectrometers. In CASSI, (i) the

2D spatial information of a scene is coded by an aperture, (ii) the coded spatial projections
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are spectrally shifted by a dispersive element, and (iii) the coded and shifted projections are

detected by a 2D FPA. That is, in each coordinate of the FPA, the received projection is an

integration of the coded and shifted voxels over all spectral bands at the same spatial coordinate.

More specifically, let f0(a, b, λ) denote the density of a scene at spatial coordinate (a, b) and at

wavelength λ, and let T (a, b) denote the coded aperture. The coded density T (a, b)f0(a, b, λ)

is then spectrally shifted by the dispersive element along one of the spatial dimensions. The

energy received by the FPA at coordinate (a, b) is therefore

g(a, b) =

∫

Λ
T (a, b− S(λ))f0(a, b− S(λ), λ)dλ, (6.1)

where S(λ) is the dispersion function induced by the prism at wavelength λ. Suppose we take

a scene of spatial dimension m by n and spectral dimension l, i.e., the dimension of the image

cube is m× n× l, and the dispersion is along the second spatial dimension y, then the number

of measurements captured by the FPA will be m(n + l − 1). If we approximate the integral

in (6.1) by a discrete summation and vectorize the 3D image cube and the 2D measurements,

then we obtain a matrix-vector form of (6.1),

g = Hf0 + z, (6.2)

where f0 is the vectorized 3D image cube of dimension N = mnl, vectors g and z are the

measurements and the additive white Gaussian noise, respectively, and the matrix H is an

equivalent linear operator that models the integral in (6.1). A sketch of this matrix is depicted

in Figure 6.1a when K = 2 shots are used.

6.2.2 Higher order CASSI

Recently, Arguello et al. [5] proposed a higher order model to characterize the CASSI system

with greater precision, and improved the quality of the reconstructed 3D image cubes. In the

standard CASSI system model, each cubic voxel in the 3D cube contributes to exactly one

measurement in the FPA. In the higher order CASSI model, however, each cubic voxel is

shifted to an oblique voxel because of the continuous nature of the dispersion, and therefore the

oblique voxel contributes to more than one measurement in the FPA. As a result, the matrix H

in (6.2) will have multiple diagonals as shown in Figure 6.1b, where there are sets of 3 diagonals

for each FPA shot, accounting for the voxel energy impinging into the neighboring FPA pixels.

In this case, the number of measurements with K = 1 shot of CASSI will be M = m(n+ l+ 1),

because each diagonal entails the use of m more pixels (we refer readers to [5] for details).

In Section 6.4, we will provide promising image reconstruction results for this higher order

CASSI system. Using the standard CASSI model, our proposed algorithm produces similar
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𝑚𝑛 (1st band) 𝑚𝑛 (2nd band) 𝑚𝑛 (3rd band) 𝑚𝑛 (4th band) 

𝑚(𝑛 + 𝑙 − 1) 
 1st shot 

𝑚(𝑛 + 𝑙 − 1) 
 2nd shot 

(a) The matrix H for standard CASSI

𝑚𝑚 (1st band) 𝑚𝑚 (2nd band) 𝑚𝑚 (3rd band) 𝑚𝑚 (4th band) 

m(𝑛 + 𝑙 + 1) 
 1st shot 

𝑚(𝑛 + 𝑙 + 1) 
 2nd shot 

(b) The matrix H for higher order CASSI

Figure 6.1: The matrix H is presented for K = 2,m = n = 8, and l = 4. The circled diagonal
patterns that repeat horizontally correspond to the coded aperture pattern used in the first FPA shot.
The second coded aperture pattern determines the next set of diagonals. In (a) standard CASSI, each
FPA shot captures m(n+ l−1) = 88 measurements; in (b) higher order CASSI, each FPA shot captures
m(n+ l + 1) = 104 measurements.

advantageous results over other competing algorithms.

6.3 Proposed Algorithm

The goal of our proposed algorithm is to reconstruct the image cube f0 from its compressive

measurements g, where the matrix H is known. In this section, we describe our algorithm

in detail. The algorithm employs (i) approximate message passing (AMP) [33], an iterative

algorithm for compressive sensing problems, and (ii) a modified version of adaptive Wiener

filtering, a hyperspectral image denoiser that can be applied within each iteration of AMP.

The CASSI system in (6.2) is a specific case of the system in (1.1), and the AMP framework

described in (2.16) and (2.17) in Section 2.2.2 can be applied to the reconstruction problem for

CASSI systems. In CASSI systems, The AMP algorithm proceeds as follows

f t+1 = ηt(H
T rt + f t), (6.3)

rt = g −Hf t +
1

R
rt−1〈η′t−1(HT rt−1 + f t−1)〉. (6.4)

At iteration t, the function ηt(·) is a 3D image denoiser that is applied to a scalar channel,

qt = HT rt + f t = f0 + vt, (6.5)
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where the variance of the noise vt is estimated by (5.3) [66].

6.3.1 Adaptive Wiener filter

We are now ready to describe our 3D image denoiser, which is the function ηt(·) in the first

step of AMP iterations in (6.3). Recall that in 2D image denoising problems, a 2D wavelet

transform is often performed and some shrinkage function is applied to the wavelet coefficients

in order to suppress noise [32, 37]. The wavelet transform based image denoising method is

effective, because natural images are usually sparse in the wavelet transform domain, i.e., there

are only a few large wavelet coefficients and the rest of the coefficients are small. Therefore, large

wavelet coefficients are likely to contain information about the image, whereas small coefficients

are usually comprised mostly of noise, and so it is effective to denoise by shrinking the small

coefficients toward zero and suppressing the large coefficients according to the noise variance.

Similarly, in hyperspectral image denoising, we want to find a sparsifying transform such that

hyperspectral images have only a few large coefficients in this transform domain. Inspired by

Arguello and Arce [4], we apply a wavelet transform to each of the 2D images in a 3D cube,

and then apply a discrete cosine transform (DCT) along the spectral dimension, because the

2D slices from different wavelengths are highly correlated. That is, the sparsifying transform Ψ

can be expressed as a Kronecker product of a DCT transform Φ and a 2D wavelet transform

W, i.e., Ψ = Φ⊗W, and it can easily be shown that Ψ is an orthonormal transform. Our

3D image denoising is processed after applying the sparsifying transform Ψ to the noisy image

cube qt.

In Chapter 5, one of the image denoisers we employed was an adaptive Wiener filter in

the wavelet domain, where the variance of each wavelet coefficient was estimated from its

neighboring coefficients within a 5 × 5 window, i.e., the variance was estimated locally. Such

an image denoiser performed well in the 2D compressive imaging problem, because the scalar

channel (6.5) obtained from the AMP iterations (6.3,6.4) was an additive white Gaussian noise

channel, and each wavelet coefficient contained independent and identically distributed (i.i.d.)

Gaussian noise. In the CASSI system (6.2), however, because the matrix H is ill-conditioned

as shown in Figure 6.1, the scalar channel (6.5) that is produced by AMP iterations is not

additive white Gaussian, and the noisy 3D image cube qt contains non-i.i.d. Gaussian noise.

Consequently, estimating the coefficient variance from its small neighboring coefficients (a 3×3

or 5 × 5 neighboring window) may not be accurate. Therefore, we modify the local variance

estimation to a global estimation procedure within each wavelet subband, and our simulation

results show that global estimation provides better reconstruction quality than local estima-

tion for hyperspectral images. Specifically, let θtq denote the coefficients of qt in the transform

domain, i.e., θtq = Ψq, and θtq,i is the i-th element of θtq. The coefficients θ̂tf of the estimated

51



(denoised) image cube f t are obtained by Wiener filtering,

θ̂tf ,i =
max{0, ν̂2

i,t − σ̂2
t }

(ν̂2
i,t − σ̂2

t ) + σ̂2
t

(
θtq,i − µ̂i,t

)
+ µ̂i,t =

max{0, ν̂2
i,t − σ̂2

t }
ν̂2
i,t

(
θtq,i − µ̂i,t

)
+ µ̂i,t, (6.6)

where µ̂i,t and ν̂2
i,t are the empirical mean and variance of θtq,i within an appropriate wavelet

subband, respectively. Taking the maximum between 0 and (ν̂2
i,t − σ̂2

t ) ensures that if the em-

pirical variance ν̂2
i,t of the noisy coefficients is smaller than the noise variance σ̂2

t , then the

corresponding noisy coefficients are set to 0. After obtaining the denoised coefficients θ̂tf , the

estimated image cube in the t-th iteration satisfies f t = Ψ−1θ̂tf = ΨT θ̂tf .

6.3.2 Derivative of adaptive Wiener filter

The adaptive Wiener filter described in Section 6.3.1 is applied in (6.3) as the 3D image denoising

function ηt(·). The following step in (6.4) requires η′t(·), i.e., the derivative of ηt(·). We now show

how to obtain η′t(·). It has been discussed in Chapter 5 (see also Tan et al. [102]) that when

the sparsifying transform is orthonormal, the derivative calculated in the transform domain

is equivalent to the derivative in the image domain. According to (6.6), the derivative of the

Wiener filter in the transform domain with respect to θ̂tq,i is max{0, ν̂2
i,t− σ̂2

t }/ν̂2
i,t. Because the

sparsifying transform Ψ is orthonormal, the Onsager term in (6.4) can be calculated efficiently

as

〈η′t(HT rt + f t)〉 =
1

n

∑

i∈I

max{0, ν̂2
i,t − σ̂2

t }
ν̂2
i,t

, (6.7)

where I is the index set of all image cube elements, and the cardinality of I is N = mnl.

We focus on image denoising in an orthonormal transform domain and apply Wiener filtering

to suppress noise, because it is convenient to obtain the Onsager correction term in (6.4). On the

other hand, other denoisers that are not wavelet-DCT based can also be applied within the AMP

framework. Metzler et al. [65], for example, proposed to utilize a block matching and 3D filtering

denoising scheme (BM3D) [29] within AMP for 2D compressive imaging reconstruction, and

run Monte Carlo [75] to approximate the Onsager correction term. However, the Monte Carlo

technique is accurate only when the scalar channel (6.5) is Gaussian. In the CASSI system

model (6.2), BM4D [62] may be an option for the 3D image denoising procedure. However,

because the matrix H is ill-conditioned, the scalar channel (6.5) that is produced by AMP

iterations (6.3,6.4) is not Gaussian, and thus the Monte Carlo technique fails to approximate

the Onsager correction term.
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6.3.3 AMP-3D-Wiener

The matrix H defined in (6.2) is not i.i.d. Gaussian, but highly structured as shown in Figure 6.1.

The AMP framework may encounter divergence issues with this matrix H. We introduced the

standard technique “damping” [84, 114] in Section 5.2.2 to solve for the divergence problems of

AMP, because it is simple and only increases the runtime modestly. AMP has been proved [84]

to converge with sufficient damping, under the assumption that the prior of f0 has fixed means

and variances throughout all iterations, and the amount of damping depends on the condition

number of the matrix H. Unfortunately, our previously proposed AMP-Wiener in Chapter 5

encounters divergence issues for the matrix H in (6.2) even with significant damping. Therefore,

in our modified algorithm AMP-3D-Wiener, we propose a simple version of the adaptive Wiener

filter as described in Section 6.3.1 to stabilize the estimation of the prior distribution of f0. We

find in our simulations that AMP-3D-Wiener converges for all tested hyperspectral image cubes

with a moderate amount of damping.

Our proposed AMP-3D-Wiener is summarized in Algorithm 2, where f̂AMP denotes the

image cube reconstructed by AMP-3D-Wiener. Note that in the first iteration of Algorithm 2,

initialization of q0 and ν̂2
0 may not be necessary, because r0 is an all-zero vector, and the

Onsager term is 0 at iteration 1.

Algorithm 2 AMP-3D-Wiener

Inputs: g, H, α, maxIter
Outputs: f̂AMP

Initialization: f1 = 0, r0 = 0

for t = 1 : maxIter do

1. rt = g −Hf t + 1
Rrt−1 1

n

∑n
i=1

max{0,ν̂2i,t−1−σ̂2
t−1}

ν̂2i,t−1
% Residual

2. rt = α · rt + (1− α) · rt−1 % Damping

3. qt = HT rt + f t % Noisy 3D image cube

4. ν̂2
t = 1

m

∑
j(r

t
j)

2 % Noise variance

5. θtq = Ψqt % Sparsifying transform

6. θ̂tf ,i =
max{0,ν̂2i,t−σ̂2

t }
ν̂2i,t

(
θtq,i − µ̂i,t

)
+ µ̂i,t % Adaptive Wiener filter

7. f t+1 = α ·ΨT θ̂tf + (1− α) · f t % Damping
end for
f̂AMP = fmaxIter+1
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506 nm 515 nm 524 nm 533 nm 542 nm 551 nm

560 nm 569 nm 578 nm 587 nm 596 nm 605 nm

614 nm 623 nm 632 nm 641 nm 650 nm 659 nm

Figure 6.2: The Lego scene. (The target object presented in the experimental results was not endorsed
by the trademark owners and it is used here as fair use to illustrate the quality of reconstruction of
compressive spectral image measurements. LEGO is a trademark of the LEGO Group, which does not
sponsor, authorize or endorse the images in this dissertation. The LEGO Group. All Rights Reserved.
http://aboutus.lego.com/en-us/legal-notice/fair-play/.)

6.4 Numerical Results

In this section, we provide numerical results where we compare the reconstruction quality and

runtime of AMP-3D-Wiener, gradient projection for sparse reconstruction (GPSR) [38], and

two-step iterative shrinkage/thresholding (TwIST) [14, 116]. In all experiments, we use the

same coded aperture pattern for AMP-3D-Wiener, GPSR, and TwIST. In order to quantify

the reconstruction quality of each algorithm, the peak signal to noise ratio (PSNR) of each 2D

slice in the reconstructed cubes is measured. The PSNR is defined as the ratio between the

maximum squared value of the ground truth image cube f0 and the mean square error of the
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estimation f̂ , i.e.,

PSNR = 10 · log10




maxx,y,λ

(
f2

0,(x,y,λ)

)

∑
x,y,λ

(
f̂(x,y,λ) − f0,(x,y,λ)

)2


 ,

where f(x,y,λ) denotes the element in the cube f at spatial coordinate (x, y) and spectral coor-

dinate λ.

In AMP, the damping parameter α is set to be 0.2. Other damping values are possible, but

for smaller values such as 0.1, the reconstruction quality improves more slowly as the iteration

number increases; for larger values such as 0.5, AMP may diverge. Recall that the amount of

damping can be adjusted by evaluating the values of ν̂2
t from (5.3). The choice of damping

mainly depends on the structure of the imaging model in (6.2) but not on the characteristics

of the image cubes, and thus the value of the damping parameter α need not be tuned in our

experiments.

To reconstruct the image cube f0, GPSR and TwIST minimize objective functions of the

form

f̂ = arg min
f

1

2
‖g −Hf‖22 + β · φ(f), (6.8)

where φ(·) is a regularization function that characterizes the structure of the image cube f0,

and β is a regularization parameter that balances the weights of the two terms in the objective

function. In GPSR, φ(f) = ‖Ψf‖1; in TwIST, the total variation regularizer is employed,

φ(f) =
L∑

λ=1

m∑

x=1

n∑

y=1

(
(f(x+ 1, y, λ)− f(x, y, λ))2 + (f(x, y + 1, λ)− f(x, y, λ))2

)1/2

. (6.9)

The value of the regularization parameter β in (6.8) greatly affects the reconstruction results

of GPSR and TwIST, and must be tuned carefully. We select the optimal values of β for GPSR

and TwIST manually, i.e., we run GPSR and TwIST with 5−10 different values of β, and select

the results with the highest PSNR. The typical value of the regularization parameter for GPSR

is between 10−5 and 10−4, and the value for TwIST is around 0.1. We note in passing that the

ground truth image cube is not known in practice, and estimating the PSNR obtained using

different β may be quite involved and require oracle-like information when using GPSR and

TwIST. There exist other hyperspectral image reconstruction algorithms based on dictionary

learning [74, 122]. However, it is not straightforward to modify these dictionary learning methods

to the higher order CASSI model described in Section 6.2.2, and so we do not include these

algorithms in the comparison.
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Figure 6.3: Runtime versus average PSNR comparison of AMP-3D-Wiener, GPSR, and TwIST for the
Lego image cube. Cube size is m = n = 256, and l = 24. The measurements are captured with K = 2
shots using complementary coded apertures, and the number of measurements is M = 143, 872. Random
Gaussian noise is added to the measurements such that the SNR is 20 dB.

6.4.1 Test on “Lego” image cube

The first set of simulations is performed for the scene shown in Figure 6.2. This data cube

was acquired using a wide-band Xenon lamp as the illumination source, modulated by a visible

monochromator spanning the spectral range between 448 nm and 664 nm, and each spectral

band has 9 nm width. The image intensity was captured using a grayscale CCD camera, with

pixel size 9.9 µm, and 8 bits of intensity levels. The resulting test data cube hasm×n = 256×256

pixels of spatial resolution and l = 24 spectral bands.

Setting 1: The measurements g are captured withK = 2 shots such that the coded aperture

in the second shot is the complement of the aperture in the first shot. Therefore, we ensure

that in the matrix H in (6.2), the norm of each column is similar. The measurement rate with

two shots is M/N = Km(n+ l+ 1)/(mnl) ≈ 0.09. Moreover, we add Gaussian noise with zero

mean to the measurements. The signal to noise ratio (SNR) is defined as 10 log10(µg/σnoise) [4],

where µg is the mean value of the measurements Hf0 and σnoise is the standard deviation of

the additive noise z. In Setting 1, we add measurement noise such that the SNR is 20 dB.

Figure 6.3 compares the reconstruction quality of AMP-3D-Wiener, GPSR, and TwIST

within a certain amount of runtime. Runtime is measured on a Dell OPTIPLEX 9010 running an

Intel(R) CoreTM i7-860 with 16GB RAM, and the environment is Matlab R2013a. In Figure 6.3,

the horizontal axis represents runtime in seconds, and the vertical axis is the averaged PSNR

over the 24 spectral bands. Although the PSNR of AMP-3D-Wiener oscillates at the first few

iterations, which may be because the matrix H is ill-conditioned, it becomes stable after 50

seconds and reaches a higher level when compared to the PSNRs of GPSR and TwIST at 50
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Figure 6.4: Spectral band versus PSNR comparison of AMP-3D-Wiener, GPSR, and TwIST for the
Lego image cube. Cube size is m = n = 256, and l = 24. The measurements are captured with K = 2
shots using complementary coded apertures, and the number of measurements is M = 143, 872. Random
Gaussian noise is added to the measurements such that the SNR is 20 dB.

seconds. After 450 seconds, the average PSNR of the cube reconstructed by AMP-3D-Wiener

(solid curve with triangle markers) is 26.16 dB, while the average PSNRs of GPSR (dash curve

with circle markers) and TwIST (dash-dotted curve with cross markers) are 23.46 dB and 25.10

dB, respectively. Note that in 450 seconds, TwIST runs around 200 iterations, while AMP-3D-

Wiener and GPSR run 400 iterations.

Figure 6.4 complements Figure 6.3 by illustrating the PSNR of each 2D slice in the recon-

structed cube separately. It is shown that the cube reconstructed by AMP-3D-Wiener has 2−4

dB higher PSNR than the cubes reconstructed by GPSR and 0.4 − 3 dB higher than those of

TwIST for all 24 slices.

In Figure 6.5, we plot the 2D slices at wavelengths 488 nm, 533 nm, and 578 nm in the

actual image cubes reconstructed by AMP-3D-Wiener, GPSR, and TwIST. The images in these

four rows are slices from the ground truth image cube f0, the cubes reconstructed by AMP-

3D-Wiener, GPSR, and TwIST, respectively. At the same time, the images in columns 1 − 3

show the upper-left part of the scene, whereas images in columns 4 − 6 show the upper-right

part of the scene. All images are of size 128 × 128. It is clear from Figure 6.5 that the 2D

slices reconstructed by AMP-3D-Wiener have better visual quality; the slices reconstructed by

GPSR have blurry edges, and the slices reconstructed by TwIST lack details, because the total

variation regularization tends to constrain the images to be piecewise constant.

Furthermore, a spectral signature plot analyzes how the pixel values change along the spec-

tral dimension at a fixed spatial location, and we present such spectral signature plots for the

image cubes reconstructed by AMP-3D-Wiener, GPSR, and TwIST in Figure 6.6. Three spatial
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Figure 6.5: 2D slices at wavelengths 488 nm, 533 nm, and 578 nm in the image cubes reconstructed
by AMP-3D-Wiener, GPSR, and TwIST for the Lego image cube. Cube size is m = n = 256, and
l = 24. The measurements are captured with K = 2 shots using complementary coded apertures, and
the number of measurements is M = 143, 872. Random Gaussian noise is added to the measurements
such that the SNR is 20 dB. First row: ground truth; second row: the reconstruction result by AMP-
3D-Wiener; third row: the reconstruction result by GPSR; and last row: the reconstruction result by
TwIST. Columns 1 − 3: upper-left part of the scene of size 128 × 128; and columns 4 − 6: upper-right
part of the scene of size 128× 128.

locations are selected as shown in Figure 6.6a, and the spectral signature plots for locations

B, C, and D are shown in Figures 6.6b–6.6d, respectively. It can be seen that the spectral

signatures of the cube reconstructed by AMP-3D-Wiener closely resemble those of the ground

truth image cube (dotted curve with square markers), whereas there are discrepancies between

the spectral signatures of the cube reconstructed by GPSR or TwIST and those of the ground

truth cube.
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(d) x = 63, y = 55

Figure 6.6: Comparison of AMP-3D-Wiener, GPSR, and TwIST on reconstruction along the spectral
dimension of three spatial pixel locations as indicated in (a). The estimated pixel values are illustrated
for (b) the pixel B, (c) the pixel C, and (d) the pixel D.

According to the runtime experiment from Setting 1, we run AMP-3D-Wiener with 400 iter-

ations, GPSR with 400 iterations, and TwIST with 200 iterations for the rest of the simulations,

so that all algorithms complete within a similar amount of time.

Setting 2: In this experiment, we add measurement noise such that the SNR varies from

15 dB to 40 dB, which is the same setting as in Arguello and Arce [4], and the result is shown

in Figure 6.7. Again, AMP-3D-Wiener achieves more than 2 dB higher PSNR than GPSR, and

about 1 dB higher PSNR than TwIST, overall.

Setting 3: In Settings 1 and 2, the measurements are captured with K = 2 shots. We now

test our algorithm on the setting where the number of shots varies from K = 2 to K = 12

with pairwise complementary coded apertures. Specifically, we randomly generate the coded

aperture for the k-th shot for k = 1, 3, 5, 7, 9, 11, and the coded aperture in the (k + 1)-th shot

is the complement of the aperture in the k-th shot. In this setting, a moderate amount of noise

(20 dB) is added to the measurements. Figure 6.8 presents the PSNR of the reconstructed
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Figure 6.7: Measurement noise versus average PSNR comparison of AMP-3D-Wiener, GPSR, and
TwIST for the Lego image cube. Cube size is m = n = 256, and l = 24. The measurements are
captured with K = 2 shots using complementary coded apertures, and the number of measurements is
M = 143, 872.
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Figure 6.8: Number of shots versus average PSNR comparison of AMP-3D-Wiener, GPSR, and TwIST
for the Lego image cube. Cube size is n = m = 256, and l = 24. The measurements are captured using
pairwise complementary coded apertures. Random Gaussian noise is added to the measurements such
that the SNR is 20 dB.

cubes as a function of the number of shots, and AMP-3D-Wiener consistently beats GPSR and

TwIST.
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15 dB 20 dB

AMP GPSR TwIST AMP GPSR TwIST

Scene 1 32.69 28.10 31.05 33.29 28.09 31.16
Scene 2 26.52 24.32 26.25 26.65 24.40 26.41
Scene 3 32.05 29.33 31.21 32.45 29.55 31.54
Scene 4 27.57 25.19 27.17 27.76 25.47 27.70
Scene 5 29.68 27.09 29.07 29.80 27.29 29.42
Scene 8 28.72 25.53 26.24 29.33 25.77 26.46

Table 6.1: Average PSNR comparison of AMP-3D-Wiener, GPSR, and TwIST for the dataset “natural
scene 2002” downloaded from [39]. The spatial dimensions of the cubes are cropped to m = n = 512,
and each cube has l = 31 spectral bands. The measurements are captured with K = 2 shots, and the
number of measurements is M = 557, 056. Random Gaussian noise is added to the measurements such
that the SNR is 15 or 20 dB. Because the spatial dimensions of the cubes “scene 6” and “scene7” in
“natural scenes 2002” are smaller than 512× 512, we do not include results for these two cubes.

6.4.2 Test on natural scenes

Besides the Lego image cube, we have also tested our algorithm on image cubes of natural

scenes [39].1 There are two datasets, “natural scenes 2002” and “natural scenes 2004,” each one

with 8 image data cubes. The cubes in the first dataset have L = 31 spectral bands with spatial

resolution of around 700 × 700, whereas the cubes in the second dataset have L = 33 spectral

bands with spatial resolution of around 1000× 1000. To satisfy the dyadic constraint of the 2D

wavelet, we crop their spatial resolution to be m = n = 512. Because the spatial dimensions

of the cubes “scene 6” and “scene7” in the first dataset are smaller than 512× 512, we do not

include results for these two cubes.

The measurements are captured with K = 2 shots, and the measurement rate is M/N =

Km(n+ l+ 1)/(mnl) ≈ 0.069 for “natural scene 2002” and 0.065 for “natural scene 2004.” We

test for measurement noise levels such that the SNRs are 15 dB and 20 dB. The typical runtimes

for AMP with 400 iterations, GPSR with 400 iterations, and TwIST with 200 iterations are

approximately 2, 800 seconds. The average PSNR over all spectral bands for each reconstructed

cube is shown in Tables 6.1 and 6.2. We highlight the highest PSNR among AMP-3D-Wiener,

GPSR, and TwIST using bold fonts. It can be seen from Tables 6.1 and 6.2 that AMP-3D-

Wiener usually outperforms GPSR by 2−5 dB in terms of the PSNR, and outperforms TwIST

by 0.2− 4 dB. In addition, the results of 6 selected image cubes are displayed in Figure 6.9 in

the form of 2D RGB images.2 The four rows of images correspond to ground truth, results by

AMP-3D-Wiener, results by GPSR, and results by TwIST, respectively. We can see from Fig-

1The cubes are downloaded from http://personalpages.manchester.ac.uk/staff/d.h.foster/.
2We refer to the tutorial from http://personalpages.manchester.ac.uk/staff/david.foster/Tutorial HSI2RGB/Tutorial

HSI2RGB.html and convert 3D image cubes to 2D RGB images.
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15 dB 20 dB

AMP GPSR TwIST AMP GPSR TwIST

Scene 1 30.48 28.43 30.17 30.37 28.53 30.31
Scene 2 27.34 24.71 27.03 27.81 24.87 27.35
Scene 3 33.13 29.38 31.69 33.12 29.44 31.75
Scene 4 32.07 26.99 31.69 32.14 27.25 32.08
Scene 5 27.44 24.25 26.48 27.83 24.60 26.85
Scene 6 29.15 24.99 25.74 30.00 25.53 26.15
Scene 7 36.35 33.09 33.59 37.11 33.55 34.05
Scene 8 32.12 28.14 28.22 32.93 28.82 28.69

Table 6.2: Average PSNR comparison of AMP-3D-Wiener, GPSR, and TwIST for the dataset “natural
scene 2004” downloaded from [39]. The spatial dimensions of the cubes are cropped to m = n = 512,
and each cube has l = 33 spectral bands. The measurements are captured with K = 2 shots, and the
number of measurements is M = 559, 104. Random Gaussian noise is added to the measurements such
that the SNR is 15 or 20 dB.

ure 6.9 that AMP-3D-Wiener produces images with better quality, while images reconstructed

by GPSR and TwIST are blurrier.

6.5 Conclusion

In this chapter, we considered the compressive hyperspectral imaging reconstruction problem

for the coded aperture snapshot spectral imager (CASSI) system. Considering that the CASSI

system is a great improvement in terms of imaging quality and acquisition speed over conven-

tional spectral imaging techniques, it is desirable to further improve CASSI by accelerating

the 3D image cube reconstruction process. Our proposed AMP-3D-Wiener used an adaptive

Wiener filter as a 3D image denoiser within the approximate message passing (AMP) [33] frame-

work. AMP-3D-Wiener was faster than existing image cube reconstruction algorithms, and also

achieved better reconstruction quality.

Future improvements: In our current AMP-3D-Wiener algorithm for compressive hyper-

spectral imaging reconstruction, we estimated the noise variance of the noisy image cube within

each AMP iteration using (5.3). In order to denoise the noisy image cube in the sparsifying

transform domain, we applied the estimated noise variance value to all wavelet subbands. The

noise variance estimation and 3D image denoising method were effective, and helped produce

promising reconstruction. However, both the noise variance estimation and the 3D image de-

noising method may be sub-optimal, because the noisy image cube within each AMP iteration

does not contain i.i.d. Gaussian noise, and so the coefficients in the different wavelet subbands

may contain different amounts of noise. Therefore, it is possible that the denoising part of
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Figure 6.9: Comparison of selected image cubes reconstructed by AMP-3D-Wiener, GPSR, and TwIST
for the datasets “natural scene 2002” and “natural scene 2004.” The 2D RGB images shown in this
figure are converted from their corresponding 3D image cubes. Cube size is n = m = 512, and l = 31 for
images in columns 1− 2 or L = 33 for images in columns 3− 6. Random Gaussian noise is added to the
measurements such that the SNR is 20 dB. First row: ground truth; second row: the reconstruction result
by AMP-3D-Wiener; third row: the reconstruction result by GPSR; and last row: the reconstruction
result by TwIST.

the proposed algorithm, including the noise variance estimation, can be further improved. The

study of such denoising methods is left for future work.
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Chapter 7

Discussion

In this dissertation, we explored several aspects of compressive signal reconstruction problems.

First, we considered non-standard error metrics in order to robustify the reconstruction al-

gorithms, because minimizing conventional error metrics such as mean square error may not

always yield satisfactory results. Seeing that generalized approximate message passing (GAMP)

and approximate message passing (AMP) decouple the compressive sensing system to parallel

scalar Gaussian channels and provide the posterior distribution of the input signal of interest,

we utilized this feature of GAMP and AMP to obtain the reconstructed signal by minimizing

the expected user-defined error.

As an example of a non-standard error metric, we looked into the `∞-norm error. We

found interesting properties of signal reconstruction by minimizing `∞-norm error, where input

signals are generated by i.i.d. Gaussian mixture sources. More specifically, we found that in

parallel scalar Gaussian channels, the minimum `∞-norm error is achieved by the Wiener filter

that corresponds to the Gaussian component with the maximum variance. Since compressive

sensing systems can be decoupled by GAMP and AMP, the Wiener filter can also be applied

in compressive sensing systems to minimize the `∞-norm error. Additionally, we used `p-norm

error as a practical alternative to `∞-norm error, owing to the fact that the theoretical results

for `∞-norm error are asymptotic in nature. On the other hand, the theoretical results are based

on the assumption that the input signals are generated by i.i.d. Gaussian mixture sources, and it

would be interesting to investigate the properties of `∞-norm minimization where input signals

are generated by other sources.

After looking into the compressive signal reconstruction problems with non-standard er-

ror metrics, we studied compressive imaging problems, which are important applications of

compressive signal reconstruction. We developed AMP-based compressive image reconstruction

algorithms, for both general compressive imaging settings and hyperspectral imaging settings.

By employing robust and efficient image denoisers within AMP iterations, our proposed algo-
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rithms outperform the prior art in terms of both reconstruction quality and runtime.

One limitation of our proposed hyperspectral image reconstruction algorithm is that we

restrict the coded apertures in multiple shots to be complementary. For completely random

coded apertures, our proposed algorithm encounters divergence problems, and this problem is

left for future work.

In our compressive image reconstruction algorithms, however, we used squared error (`2-

norm error) as the performance metric. Besides the `2-norm error, Bayati and Montanari [10]

have shown that state evolution in AMP also holds for other error metrics such as `p-norm error

where p 6= 2. We believe that, when some error metric other than `2 error is considered, there

exist denoisers that are optimal for this error metric of interest, and thus by applying these

denoisers within AMP we may be able to achieve optimal reconstruction results for compressive

image reconstruction problems. The development of such denoisers is a possible direction for

future work.
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Appendix A

Proof of Corollary 1

When

dAE(x̂j , xj) = |x̂j − xj |,

equations (4.13) or (4.14) solve for the MMAE estimand, x̂MMAE. In order to find the minimum,

we take the derivative of the expected function over x̂j ,

d E(|x̂j − xj || qj)
dx̂j

∣∣∣∣
x̂j=x̂j,MMAE

= 0, (A.1)

for each j = {1, 2, . . . , N}. But

E(|x̂j − xj ||qj) =

∫ ∞

0
Pr(|x̂j − xj | > t|qj)dt

=

∫ ∞

0
Pr(x̂j − xj > t|qj)dt+

∫ ∞

0
Pr(x̂j − xj < −t|qj)dt

=

∫ x̂j

−∞
Pr(xj < t1|qj)dt1 +

∫ ∞

x̂j

Pr(xj > t2|qj)dt2, (A.2)

where changes of variables t1 = x̂j − t and t2 = x̂j + t are applied in (A.2). Using (A.1) and

(A.2), we need

Pr(xj < x̂j,MMAE|qj)− Pr(xj > x̂j,MMAE|qj) = 0,

and thus x̂j,MMAE is given as the median of the conditional statistics fXj |Qj (xj |qj),

∫ x̂j,MMAE

−∞
fXj |Qj (xj |qj)dxj =

∫ +∞

x̂j,MMAE

fXj |Qj (xj |qj)dxj =
1

2
.
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Then, the conditional mean absolute error is,

E[ |x̂j,MMAE − xj || qj ]

=

∫ +∞

−∞
|x̂j,MMAE − xj |fXj |Qj (xj |qj)dxj

=

∫ x̂j,MMAE

−∞
(x̂j,MMAE − xj)fXj |Qj (xj |qj)dxj +

∫ +∞

x̂j,MMAE

(xj − x̂j,MMAE)fXj |Qj (xj |qj)dxj

=

∫ x̂j,MMAE

−∞
(−xj)fXj |Qj (xj |qj)dxj +

∫ +∞

x̂j,MMAE

xjfXj |Qj (xj |qj)dxj .

Therefore, the MMAE for location j, MMAEj(fXj , µ), is

MMAEj(fXj , µ) = E[|x̂j,MMAE − xj |]

=

∫ +∞

−∞
E[ |x̂j,MMAE − xj || qj ]fQj (qj)dqj

=

∫ +∞

−∞

(∫ x̂j,MMAE

−∞
(−xj)fXj |Qj (xj |qj)dxj +

∫ +∞

x̂j,MMAE

xjfXj |Qj (xj |qj)dxj

)
fQj (qj)dqj .

We note in passing that the integrations can be evaluated numerically in an implementation.

Because the input x is i.i.d., and the decoupled scalar channels have the same parameter µ,

the values of MMAEj for all j ∈ {1, 2, . . . , N} are the same, and the overall MMAE is

MMAE(fX, µ) = N ·MMAEj(fXj , µ).
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Appendix B

Proof of Corollary 2

Similar to the idea of giving a limit on support recovery error rate [110], we derive the MMSuE

limit for the case where the input is real-valued and the matrix A is rectangular (M < N). In

the scalar Gaussian channel (3.2), we factor the sparse Gaussian input Xj into Xj = Uj · Bj ,
where Uj ∼ N (0, σ2) and Bj ∼ Bernoulli(p), i.e., Pr(Bj = 1) = p = 1 − Pr(Bj = 0). The

support recovery problem is the task of finding the maximum a-posteriori (MAP) estimation

of Bj .

For our estimation algorithm, the conditional expectation of support recovery error is,

E [d(x̂j , xj)|qj ] =





Pr(Bj = 1|qj) if b̂j = 0 and bj = 1

Pr(Bj = 0|qj) if b̂j = 1 and bj = 0

0 if b̂j = 0 and bj = 0

0 if b̂j = 1 and bj = 1

.

The estimand b̂j,opt minimizes E [d(x̂j , xj)|qj ], which implies

b̂j,opt =





0 if Pr(Bj = 1|qj) ≤ Pr(Bj = 0|qj)

1 if Pr(Bj = 1|qj) > Pr(Bj = 0|qj)
. (B.1)
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It is easy to see that fQj |Bj (qj |0) ∼ N (0, µ) and fQj |Bj (qj |1) ∼ N (0, σ2 + µ). Then,

Pr(Bj = 1|qj) =
fQj |Bj (qj |1)Pr(Bj = 1)

fQj (qj)

=
fQj |Bj (qj |1)Pr(Bj = 1)∑

bj=0,1 fQj |Bj (qj |bj)Pr(Bj = bj)

=
1

1 + 1−p
p

√
σ2/µ+ 1exp

(
− q2j

2 ·
σ2/µ
σ2+µ

) , (B.2)

and similarly

Pr(Bj = 0|qj) =
fQj |Bj (qj |0)Pr(Bj = 0)

fQj (qj)

=

1−p
p

√
σ2/µ+ 1exp

(
− q2j

2 ·
σ2/µ
σ2+µ

)

1 + 1−p
p

√
σ2/µ+ 1exp

(
− q2j

2 ·
σ2/µ
σ2+µ

) . (B.3)

Therefore, Pr(Bj = 1|qj) > Pr(Bj = 0|qj) implies

q2
j > τ = 2 · σ

2 + µ

σ2/µ
ln

(
(1− p)

√
σ2/µ+ 1

p

)
,

and vice versa. We can rewrite (B.1) as,

b̂j,opt =





0 if q2
j ≤ τ

1 if q2
j > τ

.

By averaging over the range of Qj , we get the overall MMSuE,

MMSuE(fX, µ) = N · E[dj,support(x̂j , xj)]

= N

∫
E (dj,support(x̂j , xj)|qj) fQj (qj)dqj

= N

∫

q2j>τ
Pr(Bj = 0|qj)fQj (qj)dqj +N

∫

q2j≤τ
Pr(Bj = 1|qj)fQj (qj)dqj

= N · Pr(Bj = 0, q2
j > τ) +N · Pr(Bj = 1, q2

j ≤ τ)

= N · Pr(q2
j > τ |Bj = 0)Pr(Bj = 0) +N · Pr(q2

j ≤ τ |Bj = 1)Pr(Bj = 1)

= N(1− p) · erfc

(√
τ

2µ

)
+Np · erf

(√
τ

2(σ2 + µ)

)
.
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Appendix C

Proof of Corollary 3

We use the same variables Uj and Bj as defined in Appendix B. For dw support (3.9), its condi-

tional expectation is

E [dw support(x̂j , xj)|qj ] =





(1− β) · Pr(Bj = 1|qj) if b̂j = 0 and bj = 1

β · Pr(Bj = 0|qj) if b̂j = 1 and bj = 0

0 if b̂j = 0 and bj = 0

0 if b̂j = 1 and bj = 1

.

The estimand b̂j,opt minimizes E [dw support(x̂j , xj)|qj ], which implies

b̂j,opt =





0 if (1− β) · Pr(Bj = 1|qj) ≤ β · Pr(Bj = 0|qj)

1 if (1− β) · Pr(Bj = 1|qj) > β · Pr(Bj = 0|qj)
. (C.1)

Plugging (B.2) and (B.3) into (C.1), we get that

b̂j,opt =





0 if q2
j ≤ τ ′

1 if q2
j > τ ′

,

where

q2
j > τ ′ = 2 · σ

2 + µ

σ2/µ
ln

(
β(1− p)

√
σ2/µ+ 1

(1− β)p

)
.
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Therefore, the minimum mean weighted-support error function MMWSE(fX, µ) is,

MMWSE(fX, µ) = N · E[dj,w support(x̂j , xj)]

= N

∫
E (dj,w support(x̂j , xj)|qj) fQj (qj)dqj

= N

∫

q2j>τ
′
βPr(Bj = 0|qj)fQj (qj)dqj +N

∫

q2j≤τ ′
(1− β)Pr(Bj = 1|qj)fQj (qj)dqj

= Nβ(1− p) · erfc

(√
τ ′

2µ

)
+N(1− β)p · erf

(√
τ ′

2(σ2 + µ)

)
.

The false positive rate is

Pr(x̂j 6= 0|xj = 0) = Pr(q2
j > τ ′|xj = 0)

= Pr(q2
j > τ ′|Bj = 0)

= erfc

(√
τ ′

2µ

)
,

and the false negative rate is

Pr(x̂j = 0|xj 6= 0) = Pr(q2
j ≤ τ ′|xj 6= 0)

= Pr(q2
j ≤ τ ′|Bj = 1)

= erf

(√
τ ′

2(σ2 + µ)

)
.
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Appendix D

Proof of Theorem 1

Two error patterns: We begin by defining two error patterns. Consider parallel Gaussian

channels (4.3), where the input signal xi ∼ s · N (µx, σ
2
x) + (1 − s) · δ(xi) for some s, and

the noise ui ∼ N (0, σ2
u). The Wiener filter (linear estimator) for the Bernoulli-Gaussian input

is x̂W,BG = σ2
x

σ2
x+σ2

u
· (w− µx) + µx. Let I denote the index set where xi ∼ N (µx, σ

2
x), and let J

denote the index set where xj ∼ δ(xj). We define two types of error patterns: (i) for

i ∈ I ,
{
i : xi ∼ N

(
µx, σ

2
x

)}
,

the error is

ei , x̂W,BG,i − xi =
σ2
x

σ2
x + σ2

u

· (wi − µx) + µx − xi ∼ N
(

0,
σ2
xσ

2
u

σ2
x + σ2

u

)
,

where we remind readers that x̂W,BG,i denotes the i-th component of the vector x̂W,BG in (4.7);

and (ii) for

j ∈ J , {j : xj ∼ δ(xj)} ,

the error is

ẽj , x̂W,BG,j − xj =
σ2
x

σ2
x + σ2

u

· (wi − µx) + µx − 0 ∼ N
(

σ2
u

σ2
x + σ2

u

µx,
σ4
xσ

2
u

(σ2
x + σ2

u)2

)
.

Maximum of error patterns: Let us compare maxi∈I |ei| and maxj∈J |ẽj |.

Lemma 1 Suppose gi is an i.i.d. Gaussian sequence of length N , gi ∼ N (µ, σ2) for i ∈
{1, 2, . . . , N}, then

max1≤i≤N |gi|√
2σ2·ln(N)

converges to 1 in probability. That is,

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N |gi|√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
= 1, (D.1)
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for any ∆ > 0.

Lemma 1 is proved in Section F.

Before applying Lemma 1, we define a set Aε of possible inputs x such that the numbers of

components in the sets I and J both go to infinity as N →∞,

Aε ,

{
x :

∣∣∣∣
|I|
N
− s
∣∣∣∣ < ε

}
, (D.2)

where ε > 0 and ε→ 0 (namely, ε→ 0+) as a function of signal dimension N , and |I| denotes the

cardinality of the set I. The definition of Aε suggests that
∣∣∣ |J |N − (1− s)

∣∣∣ < ε and |I|+ |J | = N .

Therefore, if x ∈ Aε, then |I|, |J | → ∞ as N →∞.

Now we are ready to evaluate maxi∈I |ei| and maxj∈J |ẽj |. For i.i.d. Gaussian random vari-

ables ei ∼ N (0, σ2
xσ

2
u

σ2
x+σ2

u
), where i ∈ I, the equality (D.1) in Lemma 1 becomes

lim
N→∞

Pr



∣∣∣∣∣∣

maxi∈I |ei|√
2 · σ2

xσ
2
u

σ2
x+σ2

u
· ln(|I|)

− 1

∣∣∣∣∣∣
< ∆

∣∣∣∣∣∣
x ∈ Aε


 = 1, (D.3)

for any ∆ > 0. For i.i.d. Gaussian random variables ẽj , where j ∈ J , the equality (D.1) becomes

lim
N→∞

Pr



∣∣∣∣∣∣

maxj∈J |ẽj |√
2 · σ4

xσ
2
u

(σ2
x+σ2

u)2
· ln(|J |)

− 1

∣∣∣∣∣∣
< ∆

∣∣∣∣∣∣
x ∈ Aε


 = 1, (D.4)

for any ∆ > 0.

Equations (D.3) and (D.4) suggest that

lim
N→∞

E


 maxi∈I |ei|√

2 · σ2
xσ

2
u

σ2
x+σ2

u
· ln(|I|)

∣∣∣∣∣∣
x ∈ Aε


 = 1

and

lim
N→∞

E


 maxj∈J |ẽj |√

2 · σ4
xσ

2
u

(σ2
x+σ2

u)2
· ln(|J |)

∣∣∣∣∣∣
x ∈ Aε


 = 1,

which yield

lim
N→∞

E

[
maxi∈I |ei|√

ln(N)

∣∣∣∣∣x ∈ Aε
]

= lim
N→∞

√
2 · σ2

xσ
2
u

σ2
x + σ2

u

· ln(|I|)
ln(N)

(D.5)

and

lim
N→∞

E

[
maxj∈J |ẽj |√

ln(N)

∣∣∣∣∣x ∈ Aε
]

= lim
N→∞

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
· ln(|J |)

ln(N)
. (D.6)
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According to the definition of Aε in (D.2), where s is a constant, and ε→ 0+,

N(s− ε) < |I| < N(s+ ε) and N(1− s− ε) < |J | < N(1− s+ ε), (D.7)

and thus

lim
N→∞

√
ln (|I|)
ln(N)

= 1 and lim
N→∞

√
ln (|J |)
ln(N)

= 1. (D.8)

Finally, equations (D.5) and (D.6) become

lim
N→∞

E

[
maxi∈I |ei|√

ln(N)

∣∣∣∣∣x ∈ Aε
]

=

√
2 · σ2

xσ
2
u

σ2
x + σ2

u

(D.9)

and

lim
N→∞

E

[
maxj∈J |ẽj |√

ln(N)

∣∣∣∣∣x ∈ Aε
]

=

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
. (D.10)

Combining (D.3) and (D.4),

lim
N→∞

Pr


 1−∆

1 + ∆
<

maxi∈I |ei|
maxj∈J |ẽj |

·

√
2 · σ4

xσ
2
u

(σ2
x+σ2

u)2
· ln(|J |)

√
2 · σ2

xσ
2
u

σ2
x+σ2

u
· ln(|I|)

<
1 + ∆

1−∆

∣∣∣∣∣∣
x ∈ Aε


 = 1. (D.11)

Note that√
ln(N) + ln(1− s− ε)

ln(N) + ln(s+ ε)
=

√
ln(N(1− s− ε))

ln(N(s+ ε))
<

√
ln(|J |)
ln(|I|) <

√
ln(N(1− s+ ε))

ln(N(s− ε)) =

√
ln(N) + ln(1− s+ ε)

ln(N) + ln(s− ε) .

Then the following limit holds,

lim
N→∞

√
ln(|J |)
ln(|I|)

= 1.

We can write the above limit in probabilistic form,

lim
N→∞

Pr

(∣∣∣∣∣

√
ln(|J |)
ln(|I|)

− 1

∣∣∣∣∣ < ∆

∣∣∣∣∣x ∈ Aε
)

= 1, (D.12)

for any ∆ > 0. Because of the logarithms in (D.12), the ratio

√
2·ln(|J |)√
2·ln(|I|)

is sufficiently close to 1

as N is astronomically large. This is why we point out in Section 4.7 that the asymptotic results

in this correspondence might be impractical. Plugging (D.12) into (D.11),

87



lim
N→∞

Pr

(
1−∆

(1 + ∆)2
·

√
σ2
x + σ2

u

σ2
x

<
maxi∈I |ei|
maxj∈J |ẽj |

<
1 + ∆

(1−∆)2
·

√
σ2
x + σ2

u

σ2
x

∣∣∣∣∣x ∈ Aε
)

= 1. (D.13)

Equation (D.13) holds for any ∆ > 0. We note that
√

σ2
x+σ2

u
σ2
x

> 1, and thus 1−∆
(1+∆)2

·
√

σ2
x+σ2

u
σ2
x

> 1

for sufficiently small ∆. Therefore,

lim
N→∞

Pr

(
maxi∈I |ei|
maxj∈J |ẽj |

> 1

∣∣∣∣x ∈ Aε
)

= lim
N→∞

Pr

(
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1

∣∣∣∣x ∈ Aε
)

= 1, (D.14)

and

lim
N→∞

Pr

(
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

≤ 1

∣∣∣∣x ∈ Aε
)

= 0.

Mean `∞-norm error: The road map for the remainder of the proof is to first show that

when x ∈ Aε the Wiener filter is asymptotically optimal for expected `∞-norm error, and then

show that Pr(x ∈ Aε) is arbitrarily close to 1.

In order to utilize equations (D.9) and (D.10), we normalize the quantities in the following

derivations by
√

ln(N) so that every term is bounded.

lim
N→∞

E [‖x− x̂W,BG‖∞|x ∈ Aε]√
ln(N)

= lim
N→∞

E

[
maxi∈I |xi − x̂W,BG,i|√

ln(N)

∣∣∣∣∣x ∈ Aε,
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1

]

×Pr

(
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1

∣∣∣∣x ∈ Aε
)

+ lim
N→∞

E

[
maxj∈J |xj − x̂W,BG,j |√

ln(N)

∣∣∣∣∣x ∈ Aε,
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

≤ 1

]

×Pr

(
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

≤ 1

∣∣∣∣x ∈ Aε
)
.

(D.15)
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Let us now verify that the second term in (D.15) equals 0. In fact, the following derivations

hold from (D.4) and (D.14),

1 = lim
N→∞

Pr



∣∣∣∣∣∣
maxj∈J |xj − x̂W,GB,j |√

2 · σ4
xσ

2
u

(σ2
x+σ2

u)2
· ln(|J |)

− 1

∣∣∣∣∣∣
< ∆

∣∣∣∣∣∣
x ∈ Aε




= lim
N→∞

Pr



∣∣∣∣∣∣
maxj∈J |xj − x̂W,GB,j |√

2 · σ4
xσ

2
u

(σ2
x+σ2

u)2
· ln(|J |)

− 1

∣∣∣∣∣∣
< ∆

∣∣∣∣∣∣
x ∈ Aε,

maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1


 .

Therefore,

lim
N→∞

E


maxj∈J |xj − x̂W,GB,j |√

2 · σ4
xσ

2
u

(σ2
x+σ2

u)2
· ln(|J |)

∣∣∣∣∣∣
x ∈ Aε,

maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1


 = 1,

which yields (following similar derivations of (D.6) and (D.10))

lim
N→∞

E

[
maxj∈J |xj − x̂W,GB,j |√

ln(N)

∣∣∣∣∣x ∈ Aε,
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1

]
=

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
.

Therefore, the second term in (D.15) equals
√

2 · σ4
xσ

2
u

(σ2
x+σ2

u)2
×0 = 0, and equation (D.15) becomes

lim
N→∞

E [‖x− x̂W,BG‖∞|x ∈ Aε]√
ln(N)

= lim
N→∞

E

[
maxi∈I |xi − x̂W,BG,i|√

ln(N)

∣∣∣∣∣x ∈ Aε,
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

> 1

]

= lim
N→∞

E

[
maxi∈I |xi − x̂W,BG,i|√

ln(N)

∣∣∣∣∣x ∈ Aε
]

− lim
N→∞

E

[
maxi∈I |xi − x̂W,BG,i|√

ln(N)

∣∣∣∣∣x ∈ Aε,
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

≤ 1

]

×Pr

(
maxi∈I |xi − x̂W,BG,i|
maxj∈J |xj − x̂W,BG,j |

≤ 1

∣∣∣∣x ∈ Aε
)

= lim
N→∞

E

[
maxi∈I |xi − x̂W,BG,i|√

ln(N)

∣∣∣∣∣x ∈ Aε
]
. (D.16)

Equation (D.16) shows that the maximum absolute error of the Wiener filter relates to the

Gaussian-distributed components of x.
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Optimality of the Wiener filter: It has been shown by Sherman [88, 89] that, for parallel

Gaussian channels with an i.i.d. Gaussian input x, if an error metric function d(x, x̂) relating x

and its estimate x̂ is convex, then the Wiener filter is optimal for that error metric. The `∞-norm

is convex, and therefore, for any estimator x̂,

E [‖x− x̂‖∞|x ∈ Aε]

= E

[
max
i∈I∪J

|xi − x̂i|
∣∣∣∣x ∈ Aε

]

≥ E

[
max
i∈I
|xi − x̂i|

∣∣∣∣x ∈ Aε
]

≥ E

[
max
i∈I
|xi − x̂W,BG,i|

∣∣∣∣x ∈ Aε
]
. (D.17)

The inequality (D.17) holds, because the set {xi : i ∈ I} only contains the i.i.d. Gaussian

components of x, and the Wiener filter is optimal for `∞-norm error when the input signal is i.i.d.

Gaussian. The inequality (D.17) holds for any signal length N, and thus it holds when N →∞
and we divide both sides by

√
ln(N),

0 ≤ lim
N→∞

(
E [‖x− x̂‖∞|x ∈ Aε]√

ln(N)
−
E [maxi∈I |xi − x̂W,BG,i||x ∈ Aε]√

ln(N)

)

= lim
N→∞

(
E [‖x− x̂‖∞|x ∈ Aε]√

ln(N)
−
E [‖x− x̂W,BG‖∞|x ∈ Aε]√

ln(N)

)
, (D.18)

where the last step in (D.18) is justified by the derivation of (D.16). Equation (D.18) also holds

for x̂ = x̂`∞ ,

lim
N→∞

(
E [‖x− x̂`∞‖∞|x ∈ Aε]√

ln(N)
−
E [‖x− x̂W,BG‖∞|x ∈ Aε]√

ln(N)

)
≥ 0. (D.19)

Typical set: Let us now evaluate Pr(x ∈ Aε). The set Aε only considers whether the

components in x are Gaussian or zero, and so we introduce a binary vector x̃ ∈ RN , where x̃i =

1{xi∼N (µxσ2
x)} and 1{·} is the indicator function. That is, x̃i = 1 if xi is Gaussian, and else x̃i = 0.

The sequence x̃ , {x̃1, x̃2, . . . , x̃N} is called a typical sequence ([28], page 59), if it satisfies

2−N(H(X̃)+δ) ≤ Pr(x̃1, x̃2, . . . , x̃N ) ≤ 2−N(H(X̃)−δ), (D.20)
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for some δ > 0, where H(X̃) denotes the binary entropy [28] of the sequence {x̃1, x̃2, . . . , x̃N}.
The set Aε is then called a typical set [28], and

Pr(x ∈ Aε) > 1− δ. (D.21)

We highlight that the inequalities (D.20) and (D.21) both hold when δ → 0+ as a function

of N .

In our problem setting where Pr(x̃i = 1) = Pr(xi ∼ N (µx, σ
2
x)) = s, the entropy of the

sequence {x̃1, x̃2, . . . , x̃N} is

H(X̃) = −s log2(s)− (1− s) log2(1− s), (D.22)

and the probability of the sequence {x̃1, x̃2, . . . , x̃N} is

Pr(x̃1, x̃2, . . . , x̃N ) = s|I| · (1− s)|J |. (D.23)

Plugging (D.7), (D.22), and (D.23) into (D.20), the value of δ can be computed,

δ = ε

∣∣∣∣log2

(
s

1− s

)∣∣∣∣ , (D.24)

for 0 < s < 1 and s 6= 0.5. That is,

Pr(x ∈ Aε) > 1− δ = 1− ε
∣∣∣∣log2

(
s

1− s

)∣∣∣∣ . (D.25)

Finally, we compare E [‖x− x̂WB,G‖∞] with E [‖x− x̂`∞‖∞], where x̂`∞ satisfies (4.5), i.e.,

the estimate x̂`∞ is optimal for minimizing the mean `∞-norm error of reconstruction. By

definition,

lim
N→∞

(
E [‖x− x̂`∞‖∞]√

ln(N)
−
E [‖x− x̂W,BG‖∞]√

ln(N)

)
≤ 0,

but we already proved in (D.19) that

lim
N→∞

(
E [‖x− x̂`∞‖∞|x ∈ Aε]√

ln(N)
−
E [‖x− x̂W,BG‖∞|x ∈ Aε]√

ln(N)

)
≥ 0,

and thus

lim
N→∞

(
E [‖x− x̂`∞‖∞|x /∈ Aε]√

ln(N)
−
E [‖x− x̂W,BG‖∞|x /∈ Aε]√

ln(N)

)
≤ 0. (D.26)
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We know that Pr (x /∈ Aε) < δ from (D.25). To complete the proof, it suffices to show that,

when x /∈ Aε, the subtraction (D.26) is bounded. When x /∈ Aε, there are 3 cases for the possible

values of |I| and |J |:

� Case 1: |I|, |J | → ∞, but (D.8) may not hold.

� Case 2: |J | → ∞ but |I| 6→ ∞.

� Case 3: |I| → ∞ but |J | 6→ ∞.

We observe that equations (D.9) and (D.10) are derived from (D.5), (D.6), and (D.8). In

Case 1, similar equalities to (D.5) and (D.6) hold,

lim
N→∞

E

[
maxi∈I |ei|√

ln(N)

∣∣∣∣∣Case 1 of x /∈ Aε

]
= lim

N→∞

√
2 · σ2

xσ
2
u

σ2
x + σ2

u

· ln(|I|)
ln(N)

≤

√
2 · σ2

xσ
2
u

σ2
x + σ2

u

and

lim
N→∞

E

[
maxj∈J |ẽj |√

ln(N)

∣∣∣∣∣Case 1 of x /∈ Aε

]
= lim

N→∞

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
· ln(|J |)

ln(N)
≤

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
.

Therefore, the value of limN→∞E

[
‖x−x̂W,BG‖∞√

ln(N)

∣∣∣∣Case 1 of x /∈ Aε
]

is bounded.

In Case 2, it is obvious that limN→∞E

[
maxi∈I |ei|√

ln(N)

∣∣∣∣Case 2 of x /∈ Aε
]

is bounded because

|I| 6→ ∞, while limN→∞E

[
maxj∈J |ẽj |√

ln(N)

∣∣∣∣Case 2 of x /∈ Aε
]

is bounded because |J | ≤ N , and

lim
N→∞

E

[
maxj∈J |ẽj |√

ln(N)

∣∣∣∣∣Case 2 of x /∈ Aε

]
≤

√
2 · σ4

xσ
2
u

(σ2
x + σ2

u)2
.

The analysis for Case 3 is similar to that of Case 2.

Therefore, we have shown that limN→∞E

[
‖x−x̂W,BG‖∞√

ln(N)

∣∣∣∣x /∈ Aε
]

is bounded.

By (D.26), limN→∞
E[‖x−x̂`∞‖∞|x/∈Aε]√

ln(N)
is bounded above by limN→∞E

[
‖x−x̂W,BG‖∞√

ln(N)

∣∣∣∣x /∈ Aε
]
.

Hence,

lim
N→∞

(
E [‖x− x̂W,BG‖∞|x /∈ Aε]√

ln(N)
− E [‖x− x̂`∞‖∞|x /∈ Aε]√

ln(N)

)
= c

is bounded, where c > 0 is a constant.
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Therefore,

lim
N→∞

E [‖x− x̂W,BG‖∞]

E [‖x− x̂`∞‖∞]

= lim
N→∞

E[‖x−x̂W,BG‖∞]√
ln(N)

E[‖x−x̂`∞‖∞]√
ln(N)

= lim
N→∞

E[‖x−x̂W,BG‖∞|x∈Aε]√
ln(N)

· Pr (x ∈ Aε) +
E[‖x−x̂W,BG‖∞|x/∈Aε]√

ln(N)
· Pr (x /∈ Aε)

E[‖x−x̂`∞‖∞|x∈Aε]√
ln(N)

· Pr (x ∈ Aε) +
E[‖x−x̂`∞‖∞|x/∈Aε]√

ln(N)
· Pr (x /∈ Aε)

= lim
N→∞

E[‖x−x̂W,BG‖∞|x∈Aε]√
ln(N)

· Pr (x ∈ Aε) +
E[‖x−x̂`∞‖∞|x/∈Aε]√

ln(N)
· Pr (x /∈ Aε)

E[‖x−x̂`∞‖∞|x∈Aε]√
ln(N)

· Pr (x ∈ Aε) +
E[‖x−x̂`∞‖∞|x/∈Aε]√

ln(N)
· Pr (x /∈ Aε)

+ lim
N→∞

E[‖x−x̂W,BG‖∞|x/∈Aε]√
ln(N)

· Pr (x /∈ Aε)− E[‖x−x̂`∞‖∞|x/∈Aε]√
ln(N)

· Pr (x /∈ Aε)
E[‖x−x̂`∞‖∞|x∈Aε]√

ln(N)
· Pr (x ∈ Aε) +

E[‖x−x̂`∞‖∞|x/∈Aε]√
ln(N)

· Pr (x /∈ Aε)

≤ 1 + lim
N→∞

(
E[‖x−x̂W,BG‖∞|x/∈Aε]√

ln(N)
− E[‖x−x̂`∞‖∞|x/∈Aε]√

ln(N)

)
· Pr (x /∈ Aε)

E[‖x−x̂`∞‖∞]√
ln(N)

< 1 + lim
N→∞

c · δ
E[‖x−x̂`∞‖∞]√

ln(N)

. (D.27)

In (D.27), the value of limN→∞
E[‖x−x̂`∞‖∞]√

ln(N)
is bounded below because of (D.19),

lim
N→∞

E [‖x− x̂`∞‖∞]√
ln(N)

= lim
N→∞

E [‖x− x̂`∞‖∞|x ∈ Aε]√
ln(N)

· Pr (x ∈ Aε) + lim
N→∞

E [‖x− x̂`∞‖∞|x /∈ Aε]√
ln(N)

· Pr (x /∈ Aε)

≥ lim
N→∞

E [‖x− x̂W,BG‖∞|x ∈ Aε]√
ln(N)

· Pr (x ∈ Aε)

>

√
2 · σ2

xσ
2
u

σ2
x + σ2

u

· (1− δ).

On the other hand, whether the value of
E[‖x−x̂`∞‖∞]√

ln(N)
is bounded above or not, the second term

in (D.27) is always arbitrarily small because δ is arbitrarily small, and thus (D.27) is equivalent
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to

lim
N→∞

E [‖x− x̂W,BG‖∞]

E [‖x− x̂`∞‖∞]
< 1 + δ,

where δ → 0+ as a function of N . Finally, because x̂∞ is the optimal estimator for `∞-norm

error,

lim
N→∞

E [‖x− x̂W,BG‖∞]

E [‖x− x̂`∞‖∞]
≥ 1.

Therefore,

lim
N→∞

E [‖x− x̂W,BG‖∞]

E [‖x− x̂`∞‖∞]
= 1,

which completes the proof.
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Appendix E

Proof of Theorem 2

The road map of the proof of Theorem 2 is the same as that of Theorem 1.

K error patterns: The input signal of the parallel Gaussian channels (4.3) is generated

by an i.i.d. Gaussian mixture source (4.1), and suppose without loss of generality that σ2
1 =

maxk∈{1,2,...,K} σ
2
k. The Wiener filter is x̂W,GM =

σ2
1

σ2
1+σ2

u
· (w − µ1) + µ1 =

σ2
1w+σ2

uµ1
σ2
1+σ2

u
. Let Ik

denote the index set where xi ∼ N (µk, σ
2
k),. Then we define K types of error patterns: for k ∈

{1, 2, . . . ,K}, the k-th error pattern is

e
(k)
i , x̂W,GM,i − xi

=
σ2

1wi + σ2
uµ1

σ2
1 + σ2

u

− xi

∼ N
(

σ2
u

σ2
1 + σ2

u

µ1 −
σ2
u

σ2
1 + σ2

u

µk,
σ4
u

(σ2
1 + σ2

u)2
σ2
k +

σ4
1

(σ2
1 + σ2

u)2
σ2
u

)
,

where

i ∈ Ik , {i : xi ∼ N (µk, σ
2
k)}.

Because the variances σ2
u, σ

2
1, σ

2
2, . . . , σ

2
K > 0 are constants, and σ2

1 = maxk∈{1,2,...,K} σ
2
k,

σ4
u

(σ2
1 + σ2

u)2
σ2

1 +
σ4

1

(σ2
1 + σ2

u)2
σ2
u = max

k∈{1,2,...,K}

(
σ4
u

(σ2
1 + σ2

u)2
σ2
k +

σ4
1

(σ2
1 + σ2

u)2
σ2
u

)
, (E.1)

which shows that the first error pattern e
(1)
i has the greatest variance.

Maximum of error patterns: Define the set Aε as

Aε ,

{
x :

∣∣∣∣
|I1|
N
− s1

∣∣∣∣ < ε1,

∣∣∣∣
|I2|
N
− s2

∣∣∣∣ < ε2, . . . ,

∣∣∣∣
|IK |
N
− sK

∣∣∣∣ < εK

}
,
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where
∑K

k=1 |Ik| = N , and εk → 0+ as a function of N for k ∈ {1, 2, . . . ,K}. Applying a similar

derivation to that of (D.14), we obtain that

lim
N→∞

Pr




maxi∈I1 |x̂W,GM,i − xi|
maxj∈Ik |x̂W,GM,j − xj |

>
1−∆

(1 + ∆)2
·

√
σ4
u

(σ2
1+σ2

u)2
σ2

1 +
σ4
1

(σ2
1+σ2

u)2
σ2
u

√
σ4
u

(σ2
1+σ2

u)2
σ2
k +

σ4
1

(σ2
1+σ2

u)2
σ2
u

∣∣∣∣∣∣∣∣
x ∈ Aε




(E.2)

= lim
N→∞

Pr

(
maxi∈I1 |x̂W,GM,i − xi|
maxj∈Ik |x̂W,GM,j − xj |

≥ 1

∣∣∣∣x ∈ Aε
)

(E.3)

= 1,

for any k 6= 1. Equation (E.3) is valid because (E.2) holds for any ∆ > 0, and√
σ4u

(σ21+σ
2
u)

2 σ
2
1+

σ41
(σ21+σ

2
u)

2 σ
2
u√

σ4u
(σ21+σ

2
u)

2 σ
2
k+

σ41
(σ21+σ

2
u)

2 σ
2
u

≥ 1 is derived from (E.1).

Hence,

lim
N→∞

E

[
‖x− x̂W,GM‖∞√

ln(N)

∣∣∣∣∣x ∈ Aε
]

lim
N→∞

E

[
maxi∈I1 |xi − x̂W,GM,i|√

ln(N)

∣∣∣∣∣x ∈ Aε
]
. (E.4)

Equation (E.4) shows that the maximum absolute error of the Wiener filter relates to the

Gaussian component that has the greatest variance.

Optimality of the Wiener filter: Then applying similar derivations of equations (D.18)

and (D.19),

lim
N→∞

(
E

[
‖x− x̂`∞‖∞√

ln(N)

∣∣∣∣∣x ∈ Aε
]
− E

[
‖x− x̂W,GM‖∞√

ln(N)

∣∣∣∣∣x ∈ Aε
])
≥ 0.

Typical set: Similar to the derivation of (D.24), we obtain the probability of x ∈ Aε ([28],

page 59),

Pr(x ∈ Aε) > 1− δ,

where

δ =

K∑

k=1

εk |log2(sk)| .

Finally,

lim
N→∞

E [‖x− x̂W,GM‖∞]

E [‖x− x̂`∞‖∞]
< 1 + δ,
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where δ → 0+, and thus

lim
N→∞

E [‖x− x̂W,GM‖∞]

E [‖x− x̂`∞‖∞]
= 1.
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Appendix F

Proof of Lemma 1

It has been shown [12, 43] that for an i.i.d. standard Gaussian sequence g̃i ∼ N (0, 1), where i ∈
{1, 2, . . . , N}, the maximum of the sequence, maxi g̃i, converges to

√
2 ln(N) in probability, i.e.,

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N g̃i√

2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
= 1,

for any ∆ > 0. Therefore, for an i.i.d. non-standard Gaussian sequence gi ∼ N (µ, σ2), gi−µ
|σ| ∼

N (0, 1), and it follows that

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N (gi − µ)√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
= 1, (F.1)

for any ∆ > 0. We observe that, for a given µ, the following probability equals 1 for sufficient

large N , and therefore,

lim
N→∞

Pr

(∣∣∣∣∣
−µ√

2σ2 · ln(N)
− 0

∣∣∣∣∣ < ∆

)
= 1, (F.2)

for any ∆ > 0. Combining (F.1) and (F.2),

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < 2∆

)
= 1,

for any ∆ > 0, which owing to arbitrariness of ∆ yields

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
= 1. (F.3)
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Equation (F.3) suggests that, for a sequence of i.i.d. Gaussian random variables, gi ∼ N (µ, σ2),

the maximum of the sequence is not affected by the value of µ.

On the other hand, the i.i.d. Gaussian sequence (−gi) ∼ N (−µ, σ2) satisfies

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N (−gi)√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
= 1.

Hence,

lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N |gi|√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)

= lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆ and

∣∣∣∣∣
max1≤i≤N (−gi)√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)

= lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
− lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆ and

∣∣∣∣∣
max1≤i≤N (−gi)√

2σ2 · ln(N)
− 1

∣∣∣∣∣ > ∆

)

= lim
N→∞

Pr

(∣∣∣∣∣
max1≤i≤N gi√

2σ2 · ln(N)
− 1

∣∣∣∣∣ < ∆

)
− 0

= 1,

for any ∆ > 0.
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